ID: 7050
врста предмета: стручно-апликативни
носилац предмета: Ћоћић С. Александар
извођачи: Ћоћић С. Александар
контакт особа: Ћоћић С. Александар
ниво студија: информационе технологије у машинству
ЕСПБ: 5
облик завршног испита: презентација пројекта
катедра: катедра за механику флуида
Студент треба да стекне основна теоријска знања и принципе који се користе у нумеричкој механицу флуида, затим да се оспособи за обављање основних прорачуна коришћeњем метода и поступака нумеричке механике флуида. У ту сврху студент ће користити програмски језик Python и софтвера отвореног кода (open-source) ОpenFOAM, написан у C++.
По успешном завршетку курса, студенти ће бити буду оспособљени да: - објасне основне принципе нумеричког решавања једначина које описују струјање флуида - објасне и примене методе коначних разлика и коначних запремина за дискретизацију једначина које описују струјање флуида - објасне и примене принципе генерисања нумеричке мреже - користе програмски језик Python за решавање моделских диференцијалних једначина механике флуида (једнодимензијска и дводимензијска једначина провођења топлоте, таласна једначина, Бургерсова једначина) - користе ОpenFOAM за решавање тродимензијске Лапласове и једначине конвекције-дифузије, као и проблеме ламинарног струјања нестишљивог флуида у разним струјним геометријама - објасне основне принципе моделирања турбуленције и да примене турбулентне моделе у ОpenFOAM-у за решавање проблема турбулентних струјања.
Основне идеје и принципи нумеричке механике флуида. Анализа различитих форми основних једначина механике флуида. Типови парцијалних диференцијалних једначина: параболичке, хиперболичке и елиптичке једначине. Гранични услови за парцијалне диференцијалне једначине. Основе методе коначних разлика. Апроксимација парцијалних диференцијалних једначина методом коначних разлика. Експлицитне и имплицитне методе дискретизације. Критеријуми стабилности експлицитних и имплицитних метода дискретизације. Методе решавања система алгебарских једначина. Метода коначних запремина. Дискретизација интегралних облика једначина у методи коначних запремина. Дискретизација домена - генерисање нумеричке мреже. Структуирана, блок-структуирана и неструктуиарна мрежа - упоредна анализа. Критеријуми квалитета нумеричке мреже. Нумеричко решавање Навије-Стоксових једначина. Основни принципи моделирања и нумеричког решавања једначина које описују турбулетнтно струјање. Основи примене методе коначних елемената у нумеричкој механици флуида.
ГНУ/Линукс (GNU/Linux) оперативни систем. Рад у терминалу и беш (bash) окружење. Програмски језик Пајтон (Python). Решавање једнодимензијске нестационарног Куетовог струјања коначних разлика применом експлицитног и имплицитног поступка. Имплементација метода у програмски код написан у Python-у. Решавање нестационарне хиперболичке једначине методом карактеристика на примеру хидрауличког удара. Имплементација метода у програмски код написан у Python-у. Напредни софтвери за постпроцесирање резултата - паравју (paraview). Решавање елиптичке, Лапласове једначине методом коначних разлика на примеру стационарне дводимензијске дифузије. Имплементација методе у програмски код написан у Python-у. Метода коначних запремина. Решавање стационарних проблема дифузије и конвекције-дифузије методом коначних запремина. Методе дискретизиције конвективног члана: узводна, централна и хибридне шеме. Имплементација у програмски код написан у Python-у. ОpenFOAM - структура и програмски код. Генерисање нумеричке мреже у OpenFOAM-у: blockMesh, snappyHexMesh и cfMesh. Решавање проблема дифузије у произвoљним доменимa. Решавање проблема струјања нестишљивог вискозног флуида.
Није обавезно, али је пожељно да студент има положен испит из предмета Основе механике флуида (ID 7025)
Презентације, хендоути, видео-материјали, пратеће књиге на енглеском у *.pdf формату
укупан фонд часова: 65
ново градиво: 20
разрада и примери (рекапитулација): 10
аудиторне вежбе: 20
лабораторијске вежбе: 0
рачунски задаци: 0
семинарски рад: 0
пројекат: 0
консултације: 0
дискусија/радионица: 0
студијски истраживачки рад: 0
преглед и оцена рачунских задатака: 0
преглед и оцена лабораторијских извештаја: 0
преглед и оцена семинарских радова: 0
преглед и оцена пројекта: 5
колоквијум са оцењивањем: 0
тест са оцењивањем: 5
завршни испит: 5
активност у току предавања: 0
тест/колоквијум: 0
лабораторијска вежбања: 0
рачунски задаци: 0
семинарски рад: 0
пројекат: 60
завршни испит: 40
услов за излазак на испит (потребан број поена): 0
Petrović Z., Stupar S. Projektovanje primenom računara, Mašinski fakultet Beograd; Anderson J. Computation Fluid Dynamics, The Basics With Applications, McGraw Hill Series in Aeronautical and Aerospace Engineering, 1995; Versteeg H., Malalasekera, An Introduction to Computational Fluid Dynamics - The Finite Volume Method, Pearson Prentice Hall, 2011;
Универзитет у Београду, Машински факултет
Краљице Марије 16, 11120 Београд 35
тел. (+381 11) 3302-200, факс 3370364
mf@mas.bg.ac.rs