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A Design Optimization Strategy of an 
Aircraft Composite Wing-Box Based   
on a Multi-scale FEA 
 
Design optimization of composite wings is a complex problem that involves 
numerous material and shape parameters. This paper proposes two ideas 
to solve such a problem effectively, namely, the right-complex formulation 
of the optimization problem and the use of multi-scale finite element 
analysis (FEA). The first idea is achieved following a V scheme 
(descendant ascendant scheme). In the descent, the complexity of the 
problem is reduced to the lowest level (lowest-complex formulation), which 
may not be sufficient to get potential solutions. Accordingly, an adaptive 
process is performed, progressively increasing complexity by adding new 
variables until reaching the right-complex formulation. The multi-scale 
FEA combined global and local Finite Element Method (FEM) analyses. 
The global one analyses the static of the global domain, which reveals the 
most critical panel. The latter analyses the buckling phenomenon locally 
and more accurately. This strategy is validated by optimizing a composite 
wing box from the literature and considering a well-known zone-based 
formulation. Therefore, the lowest-complex formulation is defined with the 
minimum possible number of wing zones, then adjusted by increasing 
iteratively the wing zone number. This process is stopped when the optimal 
solution becomes invariant. This application seeks to minimize the wing 
mass under many constraints, such as the maximum Von Mises stress. The 
problem is solved by coupling a Genetic Algorithm (GA) optimizer with the 
multi-scale FEA. Results showed that the adopted strategy detected the 
right-complex formulation, which significantly increased the computation 
time while gaining considerably in the wing mass with respect to the 
resistance strength criteria. 
 
Keywords: Composite Wing-Box, Design Optimization, Multi-scale FEA. 

 
 

1. INTRODUCTION  
 

In recent years, the aeronautical industry has started 
using composite materials, especially in some key parts 
of the aircraft, like the fuselage, tail, and wings [1, 2]. 
These materials can be designed to handle heavy loads, 
making them a lightweight solution that improves 
performance. However, optimizing how these materials 
are configured is challenging and often expensive due to 
the many factors that need to be considered along with 
wing design. This makes the process complex, which 
can lead to lower-quality solutions and high costs. 
Therefore, it is important to simplify these problems 
without losing the quality of the solution. 

Composite wing box structures have been the 
subject of many research papers that expand from the 
introduction of new structural configurations and 
components to the optimization of the composite lay-up. 
These papers, such as ref [3, 4], showed clearly the high 
number of design parameters of a composite wing-box, 
which leads to highly complex optimization problems. 

The latter involves thousands of finite element analyses 
(FEA) during the optimization process. In this case, the 
cost of FEA has an important effect on the overall cost, 
which motivates the development of low-cost FE 
models such as the multi-scale scheme proposed in the 
present study. The latter may be very efficient 
essentially for FEA involving dynamic behavior and 
buckling, which is more expensive than static analysis 
[5-8]. Dimitrios et al. [9, 10] reported that under some 
conditions, multi-spar composite wing box configu–
ration offers more advantages compared to the conven–
tional 2-spar design. The configuration they investigated 
was analyzed using FEM combined with analytical 
formulas. In the same vein, Dähne et al. [11] and 
Farsadi and Dähne [12] examined the impact of variable 
stringer orientations on the structural response of a 
composite wing box besides the optimization of the 
laminate parameters. A multitude of research efforts 
have been undertaken in the field of composite optimi–
zation, addressing various challenges, notably the 
extensive computational time required for simulations 
and the high-dimensional design space. Various appro–
aches and techniques have been employed to tackle 
these issues, including the utilization of surrogate 
models [13, 14], parallel processing [15, 16], multi-level 
optimization strategies, and the reduction of design 
space through variable linking. In a study conducted by 
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Liu et al. [17], a two-level optimization strategy was 
implemented in conjunction with a cubic polynomial 
response surface to optimize a composite wing under 
strength and buckling constraints. In a similar work, 
Guo et al. [18] achieved a 34.5% weight reduction of a 
composite wing using a two-stage multi-objective opti–
mization strategy. The first stage aims to optimize the 
laminate parameters, while the second stage focuses on 
aeroelastic optimization. Meanwhile, Yu Wang et al. 
[19] developed a three-step optimization procedure 
aimed at solving small optimization problems with a 
minimal number of design variables, simplifying the 
complexity of the original problem.  

Some other studies combined multiple codes and 
software in one multi-level optimization framework to 
reduce the computational costs of optimization. For ins–
tance, Fischer et al. [20] optimized the layer thicknesses 
of a composite wing box using a multilevel optimization 
framework that combined a panel analysis commercial 
code with FE software. Likewise, Carrera et al. [21] 
applied a two-level optimization for the design of com–
posite and isotropic aerospace structures with reinforced 
shell components. The first level consists of FEM soft–
ware used to estimate the panel's loadings, while the se–
cond level code performs the optimization of the panels.  

Similarly, other works [22-25] have concentrated on 
dividing efficient optimization procedures while consi–
dering structural and aeroelastic constraints [26, 27]. 
These approaches have employed various surrogate and 
equivalent models, including radial basis functions and 
equivalent plate methods, in addition to the linking of 
design variables, resulting in a substantial reduction in 
the variables set. In the same context, Jin et al. [28] used 
parallel GA and introduced a length indicator as a 
design variable to simultaneously optimize the stacking 
sequence and the ply thickness.  

Other research papers have employed the strategy of 
reducing the number of design zones as a means to 
reduce the size of design variables. For instance, Yin 
Hailian et al. [29] focused on optimizing a composite 
wing's weight and cost by considering the layout and 
structural dimensions. They achieved a reduction in 
design variables by assuming a limited number of 
design zones and maintaining the same dimensions for 
various components within each designated zone. 

Design optimization is shown to be an efficient tool 
to produce the best designs. It is traditionally performed 
in two consecutive phases: a formulation that defines 
the optimization problem, followed by a solving phase 
that produces the optimal solution for the formulated 
problem. The majority of the formulations are strai–
ghtforward, which means that they transform each 
material and design parameter into an optimization 
variable. A straightforward formulation can be over-
complex when it includes fruitless optimization varia–
bles, which leads to an extra computing cost. It can be 
under-complex when some important parameters are 
not included, hence producing low-quality solutions. 
Generally, straightforward formulations for composite 
structures are highly complex and likely over-complex, 
which raises the question of how to measure the 
complexity of this formulation and how to find the 
right-complex one. 

Extensive studies have been recently devoted to 
reducing the cost of design optimization. However, the 
majority of them focused on the solving phase rather than 
the formulation one. For instance, some strategies 
combine global and local models [30], and others use 
multi-fidelity and meta-modeling-based optimization, 
which uses approximations for expensive solvers. These 
strategies are very beneficial for highly expensive solvers, 
but the accuracy of approximations can decrease the 
quality of solutions. Thus, they are not suitable for 
moderately expensive problems such as FEA. Acco–
rdingly, it would be efficient to improve the formulation 
for problems involving FEA. Indeed, an important gain 
can be achieved only by improving the formulation of the 
optimization problem. A well-known technique, which is 
usually used to reduce the formulation complexity, is the 
Analysis of Variance (ANOVA). This method has many 
limitations. Namely, it analyses parameters independently 
in the optimization context, and it may be inefficient for 
large-scale problems. Moreover, it is used just to decrease 
the number of variables. That means if the formulation is 
under-complex, ANOVA cannot add more variables. 
This motivates the proposal of a new approach to adjust 
the formulation as much as possible. Moreover, it must be 
applicable for both over and under-complex formulation. 
For the former, it allows for considerably reduced costs 
and offers the possibility of using high-fidelity solvers 
and adding new variables, thus improving the quality of 
design and reducing costs. For under-complex, it allows 
for further improvement of the optimal solution and gives 
insight into the formulation. 

The present paper develops two ideas, allowing us to 
reduce the design optimization cost considerably. The 
first one is a V-approach, which defines the right-
complex formulation of a design optimization problem 
starting from a straightforward formulation, which is 
considered here as an input for the proposed V-
approach. This means that the V-approach represents a 
step that can be applied after the formulation of the 
optimization problem. It is achieved via a V scheme 
(descendant ascendant scheme). The descendant scheme 
is applied to an input formulation, which is generally 
straightforward, giving the lowest-complex formulation. 
Then, an adaptive process that increases progressively 
the complexity of the latter until reaching the right one 
to get the global solution. Therefore, this iterative pro–
cess must start with the lowest possible number of 
decision variables, which should explore the design 
space. Then, in each iteration, the optimization problem 
is solved, and its formulation is evaluated by comparing 
the current solution with the previous one. If this 
comparison shows that the formulation can be 
improved, new decision variables are added to a zone 
that ensures a balance of exploration/exploitation. This 
method is applied to a wing-box prototype from the 
literature. The results show that the complexity is redu–
ced considerably while the solution is not altered.  

The second idea is applied when solving the 
formulated problem in order to reduce further the cost. 
It is a multi-scale FEM analysis, which performs a static 
FEA on the global domain, allowing to select the most 
critical zone. The latter is analyzed considering buckling 
using a local FEA. 
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 The remaining parts of this paper present, firstly, 
the prototype selected as an illustrative example during 
the description of the method. Then, a motivation 
section will be presented, which will show the difficulty 
encountered with composite materials optimization, fol–
lowed by a description of the key mechanisms of the 
proposed method. The last section presents the out–
comes of the application of the proposed method on the 
selected prototype. 

 
2. ILLUSTRATIVE CASE STUDY 

 
An illustrative application is presented in the description 
section to describe the proposed method's key mecha–
nisms better. This application is performed considering 
a prototype from the open literature. This application 
allows us to expose the method's key features and 
validate its efficiency via the outcomes. 

The wing-box prototype studied in this work is the 
semi-monocoque structure used by Benaouali et al. [31]. 
Table 1 gives the main features and parameters of the 
external geometry of this prototype. 
Table 1. Parameters of the wing planform 

Parameter Value 
Aspect ratio (-) 9.4 
Taper ratio (-) 0.3 
Leading edge sweep angle  (deg) 27.5 
Semi span b/2 (m) 16.96 
Root chord  (m) 7.01 
Trapezoidal chord ratio (-) 0.71 
Kink position ratio  (-) 0.37 
Root-kink-tip twist angles (deg) 0 

 
As shown in Fig. 1, the considered wing-box struc–

tural layout is made up of a set of skin panels, 2 spars, 
27 ribs, and 16 skin stiffeners for each of the upper and 
lower skin panels, besides 4 spar caps attached to the 
spar's webs. The two spars consisting of the front and 
rear spars follow the leading and trailing edges shapes 
and are located at 15% and 75% of the airfoil chord, 
respectively. On the other side, the wing-box ribs are 
positioned at uniform distances along the wing span and 
are parallel to the flight direction. The skin stiffeners or 
stringers are also, in turn, distributed equidistantly on 
the upper and lower skin surfaces between the front and 
rear spars. 

 
Figure 1. An overview of the considered wing-box 
structural components 

In the original work of Benaouali et al. [31], the 
entire wing -box is made of the isotropic 2024-T351 
aluminum alloy. In the present study, except for 
stringers and spar caps, which are made of the isotropic 
2024-T351 aluminum alloy, all the remaining structural 
components are made of composite unidirectional 
carbon fibers/epoxy. Table 2 lists the properties of the 
relevant material.  

Among the various composite materials, carbon and 
glass fiber composites are the two most commonly used 
in the aerospace industry. As noted in reference [32], 
several airliners, including the Boeing 757, 767, and 
777, as well as the Airbus A310, A320, A330, and A340 
from Europe, feature numerous structural components 
made from these materials. However, carbon fibers are 
preferred over glass fibers, particularly in major struc–
tural components like wings and tails, due to their supe–
rior specific modulus and specific strength, as high–
lighted in reference [33]. Additionally, carbon fibers 
offer a better overall balance of properties, such as an 
improved weight-to-strength ratio, the ability to form 
complex shapes, reduced material waste, enhanced fati–
gue resistance, and superior corrosion resistance. For 
these reasons, carbon fiber composite material was se–
lected for this study, in addition to its excellent property 
balance and its established history of use in the 
aerospace industry. 
Table 2 Materials properties [31, 34] 

Carbon/Epoxy  UD300 
Property Value 
Young’s modulus E11 (Mpa)  119.3e3 
Young’s modulus  E22 (Mpa)  8.2e3 
Shear modulus  G12 (Mpa)  3.6e3 
Poisson’s ratio ν12 0.34 
Longitudinal tensile strength Xt (Mpa)   2282 
Longitudinal compressive strength (MPa) 1067 
Transverse tensile strength (MPa)  54 
Transverse compressive strength (MPa) 200 
Shear strength  S (Mpa)  99 
2024-T351 aluminum alloy 
Property Value 
Young’s modulus  E (Mpa)  73.1e3 
Yield strength σ yield (Mpa)   324 
Ultimate strength  σu (Mpa)   469 
Poisson’s ratio ν 0.3 
Density ρ (kg/m3) 2.78e3 
Allowable stress σallow  1.5 x σyield 
 
3. MOTIVATION 

 
The formulation of an optimization problem refers to 
the definition of the objectives, the constraints, and the 
decision variables as mathematical formulas. In fact, a 
problem can be formulated in different manners. For 
instance, in the present study, we aim to reduce the 
wing-box mass while keeping it resistant under different 
structural solicitations. The decision variables adopted 
in this work are related to the wing-box structure's 
material properties. 

The difficulty of using composite materials compa–
red with isotropic ones is in modeling the reduction of 
the different component thicknesses along the wing 
span-wise. This can be handled via three manners: a) by 
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changing the number of plies while keeping their 
thickness constant, ii) by changing the thickness of each 
ply and keeping the number constant, iii) by changing 
both the number of plies and their thickness (the work 
of [35] for instance). The third variant is the most 
complex, while the first and the second variants can 
produce the required representations, as can the third 
one. The first variant is more practical since changing 
the number of plies is easier than changing their 
thickness, as used in reference [36]. 

On the other hand, these composite material pro–
perties must change from one design zone to another, 
which are shown in Fig. 2. This figure shows that the 
number of design zones is very important. Indeed, 
between every two ribs, there are five design zones 
(zone of upper skin, lower skin, two spars, and the rib). 
This makes a total number of 26 times 5 design zones. 
This consideration is because, from one zone to another, 
the structural loads may change. Subsequently, the 
thickness of all components (panels, spars, ribs) must be 
more important near the root than near the tip of the 
wing. Accordingly, each zone must be assigned its own 
material properties. However, this manner of modeling 
may increase drastically the number of optimization 
variables. For instance, in the present study, if the 
number of plies changes in each zone, it results in a 
number of variables of 26 times the considered material 
properties. If the number and the orientation of plies are 
considered as optimization parameters, it gives at least a 
total number of (26 x 2 x 5) optimization variables. This 
number of variables is very important since the 
objectives are evaluated using FEM solvers. Yet, this 
number seems exaggerated, and it may exist in two 
adjacent zones with negligible differences and can be 
assigned with the same variable values. This raises the 
question of how to find the minimum sufficient set of 
optimization variables. In order to answer this question, 
the adaptive process shown in Fig. 3 is proposed. 

 
Figure 2. Optimization design zones [31] 

 

4. DESCRIPTION OF THE PROPOSED V-
APPROACH 

 
Figure 3 illustrates the flowchart of the proposed V-
approach. Its input is called the initial formulation, 
which can be straightforward. As mentioned above, this 
initial formulation may be over-complex for composite 
design optimization. 

Based on this initial formulation, the number of 
variables is reduced as possible, giving the lowest-com–
plex formulation. The mechanism of how to construct it 
is explained below (section 4.2). 

As shown in Fig. 3, the V-approach is an iterative 
process. In each iteration, the formulation is modified 
by adding new variables. The new problem is then 
solved, and its optimal solution is compared with the 
previous iteration. This process is stopped when 
reaching an invariant solution. This produces an 
optimization problem with the right complexity.  

Solving this problem requires a selection of an opti–
mization technique, a FEM solver, and an automatic 
coupling between them, as explained below in section 4.3. 

In order to validate this process, it was applied to the 
illustrative case study (section 2). 

 
Figure 3. Flowchart of the proposed method 

4.1 Initial formulation 
 

In the present study, the zone-based formulation is 
adopted to generate an initial formulation (input). This 
type of formulation was selected since it is well-
documented and widely used, which allows for efficient 
testing of the proposed V-approach. This formulation is 
based on dividing the wing into a set of zones, on each 
of which a set of decision variables is defined. This 
formulation is used by Seresta et al. [37], who divided 
the wing skin into 9 panels and considered the 
composite properties on each panel as decision 
variables. Zhang et al. [38] have divided the wing into 
29 areas in total, including all the components of the 
wing. Kilimtzidis et al. [39] have also considered 
decision variables on 06 zones of the wing. In these 
studies, the effect of the number of zones was not 
investigated. Thus, it can be over-estimated, which leads 
to an extra computing cost, or under-estimated, leading 
to a lower quality of solutions. The complexity of this 
formulation is adjusted in the present work using the 
proposed V-approach, which allows the selection of the 
right number and location of the wing zones.  

 
4.1.1 Design variables 

 
A straightforward formulation of this problem is to 
consider the number of plies and their orientations on 
each zone of the wing as decision variables, as well as 
the shape of the wig. However, this has led to an 
extremely complex problem. Validating the proposed 
approach to a problem limits the number of tests, which 
prevents investigating the different situations of 
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operation and the applicability, such as the effect of the 
refinement strategy. Therefore, in order to allow more 
comparisons of these strategies, the initial formulation 
does not consider all the previous aspects. Instead, it 
considers only the plies number as a variable without 
changing their orientations and the layout shape. At the 
same time, adequate orientations are obtained from the 
literature. Indeed, considering the orientations of the 
fibers increases the complexity considerably and 
reduces the number of tests. At the same time, the 
primary goal of the present work is to perform the 
maximum of tests of the proposed strategy instead of 
focusing on one application. 

In order to select the adequate orientation, many 
researchers, such as [40] and [41], performed 
optimization of ply orientation for wing boxes. The 
findings of Aung et al. [40] are considered in the present 
work. Figure 4 presents the adopted orientations. These 
orientations are in agreement with the physical beha–
vior. Indeed, 0° orientation is adequate for spars and 
skins in order to support bending, whereas ±45° is ade–
quate for ribs, which must support torsional loads [40].  

On the other hand, in order to guarantee symmetry 
and balance, the wing box is built by superposing a 
sequence of ply groups instead of plies (Fig. 4). Each 
ply group is composed of a set of plies, which ensures 
symmetry and balance. The skins and the spars ply-
group consist of 02 adjacent 0° plies. Whereas a rib ply-
group consists of 06 plies (45°/-45°/0°/0°/-45°/45°) 
(Fig. 4). In order to maintain this symmetry, it is nece–
ssary to consider the ply-group number as a decision 
variable instead of the ply number. 

Finally, the initial formulation is to find the optimal 
ply-group number for 05 components (2 skins, 2 spars, 
and 01 rib) for each zone. This is still an over-complex 
problem. Indeed, among the total design variables zones 
(26), it may exist adjacent zones with the same pro–
perties. Accordingly, a control point (CP) based method 
is adopted, as shown in Fig. 5. The principle of this 
method is to impose the ply-group number on some lo–

cations, which are called control points (CPs). Whereas 
the remaining zones have numbers of ply groups 
obtained from a linear interpolation between the two 
adjacent control points. This linear function can be 
justified by the distribution of aerodynamic loads that 
also follow a decreasing curve. In the following 
equations, mbr refers to the structural members of the 
wing box such as the ribs, lower/upper skins, and 

front/rear spars; ( )mbrNp yj   is the number of ply-group 

of the structural member (mbr) at a design zone 
(j) which is located at a position y of the span direction. 

mbr
jNp Can be easily determined as a function of the 

ply-group number 




 mbr

icpNp _  and 






−
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equation 1: 
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where 1_ −icpy  and icpy _ are the coordinates of the 

adjacent CPs, while mbr
icpNp 1_ −  and mbr

icpNp _   repre–

sents the laminate ply-group numbers at the adjacent 
CPs of the structural member mbr.  

In this way, the initial design vector includes, for 
each control point i,  five design variables: 

skinupper
icpNp _ , skinlower

icpNp _ , sparrear
icpNp _ , 

sparfront
icpNp _  and rib

icpNp _ . Therefore, the initial 

vector of decision variables X contains 5. N variables. 
Where N is the numbre of control points. 

 
Figure 4. Adopted ply orientation for the different parts of a wing box. 

 
Figure 5. Adopted control points-based method for ply number generation of the different zones of the skin. 
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4.1.2 Objective function and constraints 
 

The goal of this optimization process is to minimize the 
overall wing-box mass while meeting the various 
structural requirements, such as maintaining strength 
and controlling displacement and twisting at the wing 
tip. The objective function can be formulated as the sum 
of weights of all the wing-box structural components, 
which depends on the design vector  and the total 
number of elements constituting the wing-box finite 
elements model (FEM): 

∑
×

=

=
265

1

)()(
j

jobj XWXf                    (2) 

where Wj is the weight of the j-th element of the wing-
box, which are the 5 elements (rib, lower/upper skins, 
and front/rear spars) at the 26 zones. This objective 
function is minimized with respect to a given set of 
constraints related to the structural requirements. The 
first constraint corresponding to the material failure is 
formulated by the mean of Tsai-Wu and Von Mises 
failure criteria depending on the structural component 
material (composite or isotropic) [30]: 
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where σx, σy, and τxy represents the ply stresses 
expressed in the ply coordinate system and σVM is the 
Von Mises equivalent stress, while Xt, Xc, Yt, Yc, and S  
are the allowable stresses of the ply and σallow is the 
allowable stress of the isotropic material (Table 2). On 
the other hand, the vertical displacement dtip and tor–
sional twist θtip at the wing tip must stay under certain 
reference values [30]: 

01:3 ≤−
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d
d
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And  

01:4 ≤−
ref

tipC
θ
θ

                                                   (6) 

The same values used in the work of  Panettieri et al. 
[30], dref = 0.2 × b/2 and θref = 6° are adopted in the 
present study. A last optimization constraint is set to 
prevent buckling of the most critical stiffened panel in 
the upper and lower skins; this is achieved by ensuring 
that the buckling factor of the panel is bigger than a 
safety factor set equal to 1.5 in this study: 

05.1:5 ≤− crC λ                                     (7) 

Calculation of constraint C5 requires two steps: 
selection of the critical stiffened panel and construction 
of a local finite element model (LFEM) for buckling 

analysis. More details are provided in the next sections. 
In summary, the formulated optimization problem is 
given as follows:   
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The formulated problem without the last constraint 
is sufficient to obtain a physically accepted solution. 
However, it may require a huge number of compu–
tations. In order to reduce the solving cost further, an 
additional constraint on the thickness of the wing is 
added. This constraint represents the physical behavior 
of the wing in that the near root region is thicker than 
the near tip. This last constraint on the thickness allows 
faster convergence since the configurations with thicker 
tips are not solved by the FEM solver. 

 
4.2 Construction of the lowest-complex formulation 

 
As mentioned previously, the proposed V-approach has 
to be applied to an existing initial formulation for which 
the set of decision variables has already been defined. 
Accordingly, the reduction of this set is achieved by 
suppressing the maximum number of decision variables.  

However, this operation can be performed in different 
ways and may lead to different formulations, which raises 
the question of how to construct an efficient lowest 
formulation. The answer to this question is based on the 
fact that an efficient formulation must explore the maxi–
mum of the design space. A well-explored design space 
allows the discovery of the best designs and allows ad–
ding efficiently new decision variables during the adjus–
tment process in the proposed procedure (Fig. 3). Many 
methods and criteria are proposed in the literature to 
ensure exploration, such as the Latin Hyper Cube method 
and the MaxMin distance criterion [41]. The selection of 
a criterion depends on the type of problem. Moreover, the 
suppression of initial variables must not exclude variables 
necessary for the main characteristics of the problem.   

For instance, for the tested illustrative example, the 
maximum distance criterion is suitable. This means that 
the distance between CPs must be the maximum pos–
sible distance. On the other hand, the adopted method to 
generate a wing-box design is based on the interpolation 
of the composite properties between control points. 
Accordingly, the lower possible number of CPs to 
perform an interpolation is 2. Moreover, the distance 
between these 2 CPs must be the maximum. This leads 
to the 2 CPs located on the ends of the wing (tip and 
root) (CP_1 and CP_n in Fig 5). 

As a result, the initial design vector includes 10 

variables: 04 ( skinupper
cpNp 1_ , skinupper

cpNp 2_ , 
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skinlower
cpNp 1_ , skinlower

cpNp 2_ ) for the lower and upper 

skins, 04 ( sparrear
cpNp 1_ , sparfront

cpNp 1_ , sparrear
cpNp 2_ , 

sparfront
cpNp 2_ )  corresponding to the rear and front 

spars elements, and 02 related to the ribs rib
cpNp 1_ and 

rib
cpNp 2_ .  

, , , ,_1 _ 2 _1 _ 2

, , , ,_1 _ 2 _1 _ 2

,_1 _ 2
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4.3 Solving the formulated optimization problem 
 

Solving the above-formulated optimization problem 
requires the coupling of a FEM solver and an optimi–
zation algorithm into one framework, where the com–
munication between the different parts must be 
automated. 
 
4.3.1 Description of the Adopted Optimization 

Technique 
 
Genetic algorithms (GA) are one of the most used 
techniques in the optimization of ply-number in 
composite wings. Many researchers reported that GA is 
well adapted to discreet problems [37, 42, 44, and 45]. It 
is also suitable for problems with local optima owing to 
its stochastic character. As shown in Fig. 6, GA is a 
population-based method; it starts with a random 
population, which is then moved iteratively toward the 
optimal solution. The principle of moving the 
population is based on a natural selection mechanism, 
similar to a biological evolution. Each individual in the 
population is evaluated in terms of objectives and 
constraints using a FEM solver. This operation is 
performed in parallel by dividing the population into 
many subpopulations. Genetic operations perform a 
selection of parents and generate offspring via cross-
over and mutation. This produces a population of 
children that merges with the parents in order to 
guarantee elitism. Then, a population of P individuals is 
selected from the merged population. 

The two main parameters controlling the solution 
quality are the population size P and the number of 
generations (iterations). In order to ensure that the 
obtained solution is independent of these parameters, 
many tests were performed. The number of iterations is 
selected by observing the iterative process. In 
conclusion, all the tested configurations converged at 
about 50 generations. Many population sizes were 
tested, starting from a population size of 150, which 
required about 70 hours for each optimization using 
parallel computing on stations of 64 G of RAM and 24 
Xeon processors of 2.4 GH. The number of performed 
optimizations to reach the right-complex formulation is 

around 5 (5 CPS) for each strategy. The performed tests 
reveal that the population size (150) is weak, especially 
when increasing the number of control points (CP). 
Indeed, this population size corresponds to 15 times the 
number of variables for 2 CPs and only 06 times the 
number of variables for 5 CPs (each CP corresponds to 
5 optimization variables). For this reason, the 
population size was increased to reach a population size 
where the solution for 5 CPs is invariant, which is 200. 

 
Figure 6. Schematic of the adopted GA algorithm. 

 

4.3.2 Finite Element Analysis 
 
The structural response of the wing-box components is 
assessed through a finite element model using ANSYS 
APDL FE commercial software. The adopted model 
makes use of different element types depending on the 
loads carried by the concerned component in order to 
reduce the global number of degrees of freedom 
(DOFs). As a result, the thin-walled structures such as 
the skin, spar webs, and ribs are modeled as shell 
elements (SHELL181) with 6 DOFs per node, while the 
spar caps and stringers are idealized as rod elements that 
work on traction and compression only (LINK180) with 
3 DOFs per node. When necessary, the connection 
between the different elements is ensured through node 
merging. Regarding the mesh topology, all surface 
elements are generated using quadrilateral and 
triangular elements with 4 and 3 nodes, respectively, 
depending on the regularity of the surface (Fig. 7.b). 

As a way to eliminate the effects of elements size on 
the FEM results, a mesh convergence study has been 
conducted to determine an optimal mesh size. Since the 
outer and internal geometries of the wing are not 
included in the design variables, this optimal mesh is 
generated only one time and used for all the FE 
simulations. 
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Figure 7. a. Application of lift force at ribs b. Wing-box 
finite element mesh example 

As shown in Fig. 8, the three critical and inde–
pendent criteria used in optimization as constraints and 
evaluated by FEA are considered to check the mesh 
convergence. Therefore, ten (10) meshes were generated 
and used in FEA, giving the failure index and disp–
lacement distributions presented in Fig. 8. As observed, 
starting from the mesh 73000 elements, the variation of 
the selected criteria becomes negligible with respect to 
the mesh size, especially for the Tsai-Wu criterion. The 
mesh of 88000 elements was selected for the present 
optimization. The maximum difference between the 
criteria values of the selected mesh and the most refined 
one (170000 elements) is the 2.3% Von-Mises criterion.  

 

 
Figure 8. Results of the mesh convergence study  

Regarding the boundary conditions, a load is applied 
on the wing, as shown in Fig. 9. The value of this load is 
obtained from the references [30 and 31]. It is a 
symmetric pull-up maneuver at diving speed VD = 200 
m/s, considering a vertical load factor n = 2.5. The 
estimation of the aerodynamic loads acting on the wing 
is achieved by calculating the total lift using the average 
cruise lift coefficient of the wing CL = 0.58 [31]. The 
resultant force LT is calculated by the mean of equation 
9. Then, it is applied on a spanwise line of the wing 

located at 25% of the airfoil chords (Fig. 9) [7]. This 
load is spread out considering an elliptical distribution 
along the application line, as shown in Fig. 9. 

SVCnL DLT ⋅⋅⋅⋅= 2

2
1 ρ                    (9) 

where ρ and S are the air density and the wing surface, 
respectively. The load is applied through the establis–
hment of a virtual node at this specific location, which 
is subsequently connected to the boundary nodes of the 
respective rib using RBE3 elements (Fig. 7.a). On the 
other hand, the wing-box root section is fixed by setting 
all the DOFs to zero. 

 
Figure 9. Load applied on the FEM model 

The aforementioned model can be seen as a global 
finite element model (GFEM), and it is used to calculate 
the constraints C1, C2, C3, and C4 , while the constraint 
C5 is verified by the mean of a local (LFEM) that is 
constructed based on the results of the GFEM. The 
panel subjected to the maximum stringers' compressive 
loads is then considered critical. Once the critical 
stiffened panel is selected, a detailed FEM is built using 
the loads and geometry from the GFEM. Precisely, the 
stringers are no longer rod elements and are now 
replaced by shell elements, forming a T cross-section 
while preserving the same area of 375 mm2 . A buckling 
analysis is performed on the LFEM to determine the 
critical factor of this panel. 
 
4.3.3 Coupling of the FEM solver and GA  
 
The coupling of the FEM (GFEM and LFEM) and the 
optimization algorithm is achieved by adopting a batch 
mode running of the implemented programs. The GA 
optimizer is the pilot, which generates a population in 
each generation. For every individual of the population, 
which represents a wing-box prototype, a command line 
instruction is launched in the FEM solver to evaluate the 
different constraints (C1, C2, C3, C4, and C5) and the 
objective function. The FEM program is launched using 
a pre-established MACRO, allowing it to generate 
mesh, run computations, and export results for a given 
optimization variable vector X. 
 
4.4 Convergence criterion 
 
The role of the iterative process shown in Fig. 3 is to 
construct the efficient set of decision variables that 
produce the optimal solution. After adding a CP, the 
formulation is enriched with new variables, which 
requires solving the problem again, which may produce 
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a better optimal solution. Nevertheless, it must be 
stopped when the added optimization variables do not 
produce a significant improvement in the objective 
function. This criterion (ε) is a measure of the relative 
difference between the objective function value of the 
current and the previous iteration (ε = (Solp – Solc)/ 
Solc). Where Solp is the optimal mass before adding a 
CP, Solc is the optimal mass after adding the current 
CP. The limit value of ε at which the process is stopped 
(e) is a user-defined parameter. 
 
4.5 Adjusting the formulation of the optimization 

problem 
 
In the case when convergence has not been reached, the 
current formulation can be improved by adding new 
decision variables, which creates a new formulation of 
the optimization problem. The latter should be solved 
again, which constructs the iterative process. This 
process of adding new decision variables, which is 
called refinement here, depends on the over-complex 
formulation (the input), similar to the generation of the 
lowest-complex formulation. The refinement consists of 
inserting new variables gradually until the solution 
becomes invariant. In the same way as the initial 
generation of formulation, the refinement process is not 
unique, and the quality of the final formulation depends 
on the criterion used to select the added variable. 
Accordingly, adding new design variables must 
guarantee two conditions: the exploration of the 
remaining design space and the exploitation of the 
sampled space. The exploitation means that the added 
decision variables must produce an improvement of the 
optimal solution. Indeed, after adding variables, the 
problem is solved again in each iteration, and the 
solution is compared with the previous one.  

For instance, in the treated example, the initial 
formulation is constructed by considering only the two 
edge zones of the wing. Then, new zones (or CPs) are 
added iteratively during the refinement process until 
convergence (Fig. 10). In order to show the effect of the 
refinement criterion; three strategies are tested, as 
presented in section 5 (refinement strategy 1, 2, 3).  

 
Figure 10. Adjusted formulation with three control points  

 

5. RESULTS AND DISCUSSION 
 
This section presents an application of the proposed 
method on a prototype from the literature, which is the 
illustrative case study presented in section 2. Therefore, 
the proposed approach is implemented as explained in 
the previous section. The lowest-complex formulation is 
based on two control points (CP_1 and CP_2) selected 

initially at the ends of the wing, which gives initially 10 
decision variables. As mentioned before, the criteria for 
selecting the refinement CP may have an effect on the 
cost and the results of this approach. Therefore, in the 
present work, three refinement strategies to add new 
control points are tested: 

 
• Refinement strategy 1: This strategy is called 

uniform refinement. The principle of this strategy is 
that all the control points in a given iteration must 
be distributed uniformly along the span wise 
direction. This means that the control points change 
their positions from one iteration to another. 

• Refinement strategy 2: This strategy is called 
hierarchical refinement. This is in contrast to the 
previous strategy, in which changing the position of 
the control points from one iteration to another may 
not be efficient. This strategy does not change 
control points from one iteration to another. Thus, a 
new point is added between exiting control points.   

•  Refinement strategy 3: This is an adaptive 
strategy, as shown in Fig. 11. The main idea of this 
strategy is to exploit the constraints results from the 
FEA of the current iteration in order to efficiently 
choose the next CP. Indeed, adding a new CP in the 
lowest constrained zone (with the heist Margin of 
Safety) allows more mass reduction there. 
However, using only the constraint as a criterion to 
select the refinement points leads to generating all 
of them near the tip. This is not efficient as the 
mass is concentrated near the root. This drawback 
can be avoided by selecting a criterion that 
combines exploitation (minimum of constraints) 
and exploration (unsampled zones). In our study, 
we have proposed a criterion based on two control 
points.  

 
Fig. 11: Effect of adding control points inside or outside the 
critical region. 

Therefore, our demarche starts by identifying the 
weakest zones characterized by the smallest Margin of 
Safety (MoS). When a new control point (CP_3) is 
added inside the critical zones, no improvement in the 
solution is expected because any change in the author's 
control points (CP_1 and CP_2) will affect the control 
point 3 as shown in Fig. 11. However, when the 
control point (CP_3) is placed at the edge of the 
critical zones, the first control point (CP_1) can 
decrease without affecting the control points inside the 
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critical region. Nevertheless, any decrease in CP_2 
will force the critical region control points to decrease, 
which is not acceptable because this region is already 
at its limit (theoretically). The critical region is 
determined by its center and width. The center is 
simply the zone with the lowest MoS, while the width 
is a user-defined parameter that can be seen as an 
additional safety zone. In Fig. 11, the critical region 
center is zone 4, while its width is 3 zones. In this 
strategy, two adjacent control points are added at each 
iteration instead of one, resulting in a complete (from 
left or right) isolation of the critical region. A 
complete isolation from both sides (right and left) 
requires 3 control points. 

5.1 Description of optimal solutions 
 
Figures 12, 13, 14, and 15 show the obtained optimal 
solutions, in terms of objectives, constraints, and deci–
sion variables, from the application of the proposed 
method on the illustrative case study considering the 
three different refinement strategies. Fig. 12 presents, 
for each strategy, the convergence history at each refi–
nement iteration, the final optimal weight, the constraint 
values, and a schematic of the inserted control point in 
each iteration.  

The adopted indexation of control points is per–
formed as follows. Firstly, the set of CPs of the initial 
formulation (2 CPs in the present application) is indexed 
increasingly from the root to the tip (CP_1 and CP_2). 
Then, during the iterative process, each new CP receives 
the next index.  

In Fig. 12, each curve presents the convergence 
history for an optimization. Each one corresponds  to a 
formulation with a given set of control points. As shown 
in Fig. 12, the initial mass for all the optimizations is 
very close, which is due to the initialization of the GA. 
Indeed, the initial populations of the GA for the 
different runs are selected very close to the feasible 
space. These similar initializations allow a correct com–
parison. This figure also shows that the optimization 
allowed a reduction of about 20 % of the wing mass. In 
fact, all the strategies stopped at the third iteration 
(convergence criterion) because the improvement in 
mass was less than the limit value (e=1%). The conver–
gence history shows that the values of the objective 
function remain invariant for many successive itera–
tions, then it jumps to a lower value. This is essentially 
due to the high number of constraints considered. 
Indeed, for these generations, the optimizer finds lower 
masses, but the constraints C1,..5 are not satisfied. Thus, 
during this number of generations for which the best 
feasible mass remains constant, the mass wing is 
reduced considerably. Then, the next best feasible mass 
is much lower, which explains the jumps in the con–
vergence history. This figure also shows that the two 
constraints, C1 and C2, are activated first. Accordingly, 
the GA continued reducing the mass until C1 or C2 was 
activated. According to the results of strategies 1 and 2, 
the most critical optimization constraint is C2 which is 
related to the Von Mises failure criterion. In fact, this 
can be easily justified by the exclusion of the stringers 
and spar-caps from the design variables. It is also worth 

mentioning that the C2 value provides valuable insight 
into the solution's quality, which is very close to the real 
optimum of this optimization problem. Conversely, the 
constraints related to the wing tip displacement and 
torsion C3 and C4 appear to be the least significant 
ones. 

Figures 13, 14, and 15 show the optimal thickness of 
the different components in terms of the number of 
plies. This latter is presented directly on the histogram. 
It shows clearly that the thickness on the tip is reduced 
drastically compared to the root. All the strategies 
showed that the optimal thickness of the ribs is the 
lowest compared with the remaining wing parts, 
whereas the lower skin is the thickest component. The 
rib thickness is the lowest, which means that the number 
of ribs is important in view of the considered 
constraints. The upper skin thickness is slightly less 
than the lower one. 
 
5.2 Comparison of Refinement Strategies 
 
Figure 12 allows a better comparison of the three 
strategies of refinement, which can allow making the 
following conclusions: 
• The selected lowest-complex formulation used only 

2 CPs, which is insufficient to get the global opti–
mal solutions. However, when increasing the 
number of control points to four, an important gain 
in the optimal mass was realized.  

• The obtained results clearly confirm that a   stra–
ightforward formulation is generally very expen–
sive. Indeed, 4 CPs are shown to produce the same 
improvement as 5 CPs and higher. The straight– 
forward formulation would use 26 CPs.  

• The first and the second refinement strategies 
guarantee a better exploration than the third one 
but less improvement; this is due to the presence 
of some control points inside the critical regions, 
which prevent important mass reduction. 

• The refinement criterion has an important effect on 
the outcomes. Indeed, the third strategy has led to 
a better improvement when increasing the number 
of variables. This is because all the inserted CPs 
ensure the isolation of the critical region from the 
rest of the zones, offering a chance to reduce mass 
in the strongest zones.  

• A major difference between the third and the other 
two strategies is that the exploration in the third 
one is guided by the constraint results from the 
previous iteration, while it is guided by only the 
geometry in the first and second strategies. 

• Four CPs seem to be sufficient to get an optimal 
formulation with a significantly reduced cost. 

Figure 16 shows a comparison between the optimal 
solutions in terms of vertical displacement for two 
strategies with 3 control points. Both the first and 
second strategies have identical control point locations; 
hence, only one solution is represented. The solution of 
the third strategy has a lower mass compared to the 
other two strategies, which results in a greater 
displacement, as illustrated in Fig. 16.b. 
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Constraints in the third iteration (5CPs)  Positions of control points (index j of zone) 
C1 C2 C3 C4 C5  CP1 CP4 CP3 CP5 CP2 

-0.00791 -0.000245 -0.649 -2.254 0.155  1 7 14 20 26 

a) Objectives and constraints of the Strategy 1 

 
Constraints in the third iteration (5CPs)  Positions of control points (index j of zone) 

C1 C2 C3 C4 C5  CP1 CP4 CP3 CP5 CP2 
-0.00791 -0.000245 -0.649 -2.254 -0.155  1 7 14 20 26 

b) Objectives and constraints of the Strategy 2 

 
Constraints in the third iteration (5CPs)   Positions of control points (index j of zone) 
C1 C2 C3 C4 C5  CP1 CP4 CP3 CP5 CP6 CP2 

-0.00371 -0.0001 -0.620 -2.231 -0.153  1 8 9 13 14 26+ 

c) Objectives and constraints of the Strategy 3 

Fig. 12: Optimal solution, in terms of constraints and objectives, of the application of the proposed method on the illustrative 
case study considering three different refinement strategies 
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Fig. 13: Optimal solution, in terms of decision variables, of the first strategy. 

 
Fig. 14: Optimal solution, in terms of decision variables, of the second strategy. 
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Fig. 15: Optimal solution, in terms of decision variables, of the third strategy. 

 
Fig. 16: Vertical displacement results of optimal solutions (in mm) a. Third iteration from strategies 1 and 2 b. Second iteration 
from strategy 3. 

6. CONCLUSIONS 
 

This paper proposes an approach to improve the cost-
effectiveness of design optimization of composite 
structures. It aims to adjust the formulation complexity 
and reduce the solving cost. This approach is based on a 
descendant ascendant scheme, which decreases the 
formulation complexity to its lowest level and then 
increases it using an adaptive process. The latter adds 

variables until reaching the right-complex formulation. 
This idea is validated by the design of a composite 
material wing box from the literature. Therefore, an 
implementation was performed, coupling a FEM solver 
with a GA optimizer. A multi-scale solver is proposed 
here to reduce the cost of optimization further. A 
straightforward application of this formulation leads to 
26 zones; each one encapsulates 5 variables. The 
application of the proposed approach reduces this 
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formulation to the lowest level (2 zones), then increases 
it adaptively until 5 zones. 

Many conclusions arise from this application; 
namely, it revealed that the straightforward formulation 
is very expensive. Indeed, the same results were 
obtained for 26 zones with just 5 zones. This approach 
involves many techniques, such as the determination of 
the lowest-complex formulation and the refinement 
process, which require careful tuning. The adaptive 
refinement uses a criterion to select additional variables. 
This criterion has an important effect on the outcomes 
of the approach. Particularly, criteria with weak 
exploration potential lead to an expensive refinement. 

Theoretically, the proposed V-approach can be 
considered a general-purpose paradigm, which can be 
applied to different optimization problems that involve a 
complex formulation. In this case, the V-approach can 
predict the right complex problem. Indeed, after the 
initial formulation, the process of this method handles 
variables independently of their types. One advantage of 
this method is its ease of application since it is based on 
the initial formulation, which must be established by the 
user before applying it. For instance, the wing-box 
application revealed an easy applicability of this 
approach. This is mainly due to the type of initial 
formulation. The second advantage is that it can use 
some existing criteria to ensure the maximum 
exploration of the lowest complex formulation and the 
exploration-exploitation of the refinement process. 
However, for particular problems, users of this method 
should consider the particularity manually. For instance, 
if the problem contains a variable that is important for 
the functionality of the optimized system, it must be 
maintained in the lowest complex formulation. In this 
context, this applicability can be improved via more 
tests, which can be the object of upgraded versions of 
this method. 

Many ideas can be added and tested to improve this 
approach. For instance, a criterion to select the newly 
added control point can be elaborated using statistical 
methods. Indeed, a good selection of new control points 
can reduce further the complexity of the problem. 
Moreover, the constructed lowest-complex formulation 
may influence the complexity and the solution of the 
final problem. Therefore, an investigation of this 
method and its impact on the process may further 
improve the applicability of the present strategy.  
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NOMENCLATURE: 

ANOVA  Analysis of Variance 
C1, C2, C3, 
C4, C5 Optimization constraints 

CP Control Point 
dtip vertical displacement at the wing tip 
e Target precision 
E Young’s modulus 
FEA Finite element Analysis 
FEM Finite element method 
fobj Objective function 
G Shear modulus 
GA Genetic Algorithm 
GFEM Global Finite element method 
LFEM Local Finite element method 
mbr Structural member of the wing-box 
N Number of control points 
Np Number of ply-group 
P GA Population size 
X Vector of decision variables 
Solp Optimal mass before adding a CP  
Solc Optimal mass after adding a CP 
Xt, Xc, Yt, 
Yc Allowable stresses of the ply 

y Spanwise coordinate 
Wi Mass of the structural element i 

xσ , yσ  , 
and xyτ  

The ply stresses expressed in the ply 
coordinate system 

VMσ  The Von Mises equivalent stress, 

allowσ  Allowable stress of the isotropic 
material 

ε Relative difference between previous 
and current optimal solutions  

θtip torsional twist at the wing tip 
ν Poisson’s ratio  
ρ Density  

 
 

СТРАТЕГИЈА ОПТИМИЗАЦИЈЕ ДИЗАЈНА 
КОМПОЗИТНЕ КУТИЈЕ КРИЛА АВИОНА 
ЗАСНОВАНА НА ВИШЕРАЗМЕРНОМ ФЕА 

 
С. Фарах, С. Калфалах, А. Бутемеђет, Л. Реби 
 

Оптимизација дизајна композитних крила је сложен 
проблем који укључује бројне параметре материјала 
и облика. Овај рад предлаже две идеје за ефикасно 
решавање таквог проблема, а то су десна-
комплексна формулација проблема оптимизације и 
коришћење анализе коначних елемената на више 
скале (ФЕА). Прва идеја се постиже по В шеми 
(десцендентна асцендентна шема). У силаску, сло–
женост проблема се своди на најнижи ниво (најниже 
сложене формулације), што можда неће бити 
довољно за добијање потенцијалних решења. Сход–
но томе, врши се адаптивни процес, прогресивно 
повећавајући сложеност додавањем нових варијабли 
док се не постигне формулација десног комплекса. 
ФЕА на више нивоа комбинује глобалну и локалну 
анализу методе коначних елемената (ФЕМ). 
Глобални анализира статичност глобалног домена, 
што открива најкритичнији панел. Овај последњи 
анализира феномен извијања локално и прецизније. 
Ова стратегија је потврђена оптимизацијом 
композитне кутије крила из литературе и узимањем 
у обзир добро познате формулације засноване на 
зонама. Према томе, формула најниже сложености је 
дефинисана са минималним могућим бројем зона 
крила, а затим се прилагођава итеративним 
повећањем броја крилних зона. Овај процес се 
зауставља када оптимално решење постане 
непроменљиво. Ова апликација настоји да 
минимизира масу крила под многим ограничењима, 
као што је максимални Von Mises напон. Проблем је 
решен спајањем оптимизатора генетског алгоритма 
(ГА) са вишеразмерним ФЕА. Резултати су показали 
да је усвојена стратегија детектовала формулацију 
десног комплекса, што је значајно повећало време 
израчунавања уз значајно повећање масе крила у 
односу на критеријум отпорности. 
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