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Vibro-impact Regimes of Adamped
Single-mass System with Two Fixed
Stops

This study examines the periodic vibro-impact (VI) behavior of an
externally excited system containing mass, spring, and damper, whose
rectilinear motion is bounded by two symmetrical stops. Periodic external
coercive force is driving the system, with the period of the oscillator being
one or proportional to the period of the external coercive force. The
resulting differential equation of motion, coupled with boundary
conditions, is solved analytically, and solutions are discussed. The study
analyses different types of behavior and includes stability analysis. The
research findings outline the determination of the conditions (areas) in
which periodic VI modes exist for even and odd values of mode
multiplicity. Additionally, the results made it possible to determine the
frequency interval for the VI process when the distance between fixed stops
is known. By investigating the dynamics of the VI system in this work,
results were obtained that allow all possible types of motion to be
theoretically defined, as well as results that define areas of motion
stability, which allows one to find regimes that may exist in practice. The
results obtained in this paper can be applied to improving existing and
developing new vibro-impact tools and machines.
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1. INTRODUCTION

Vibro-impact (V1) systems with periodic motion have
broad applications in industries and engineering bran—
ches, such asmechanical and civil engineering, mining,
the food industry, etc. Generally, these systems are
employed when the intervals between successive im-
pacts remain uniform, and the movement is caused by a
coercive force,resulting in a range of effects. These
impact-induced dynamic phenomena can be either
detrimental or advantageous. To maximize efficiency,
minimizing the harmful effects (damage) and ampli-
fying the beneficial ones is crucial [1-3].

Many authors, such as Wiercigroch et al. [4] and
Costa [5] do experimental investigation and practical
development of VI systems. VI systems have applica—
tionsfor vibratory hammers, hammer drills, and vib-
ratory rammers [6] in energy-harvesting devices [7-9],
transmission gearboxes [10], seismic protection [11],
combustion engines [12], vibration mitigation devices
[7], MEMS including AFM [13], etc.

Many authors have studied periodic VI motion.
Papers [14-17] describe the behavior of a system con-
taining one mass and single-degree-of-freedom (SDOF),
which moves on alinear horizontal trajectory. Other
authors [18,19] studied periodic dynamical systems with
two degrees of freedom, representing a double-impact
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oscillator with many engineering applications. Systems
in [19] are with variable positions of the stops, i.e.,
bumpers. Papers [20] and [21] present the results obta—
ined by the analysis of the stability of the periodic
motion of VI systems with one bumper, which is in [20]
fixed and in [21] movable. A similar study but with two
stops is presented in [22]. Studies [23] and [24] present
the analysis of the periodic motion of oscillatory sys—
tems, which collide with one and two stops. Limiters,
bumpers, or stops in VI systems can be compliant as
well [25].

VI devices can be used to absorbshock impacts, as
presented in [26], where the efficiency of these attach—
ments is studied in passively absorbing and dissipating
substantial amounts of impact energy through the exa—
mination of various setups involving primary linear
oscillators coupled with VI attachments.

Stefani et al. [11] investigated the potential benefits
of utilizing impact occurrences in a two-sided harmo-
nically excited VI-isolated SDOF system and control-
ling the response.They examined seismic isolated cons—
truction, which moves regarding the ground during the
earthquake and suggested inserting characteristic VI
absorbers.

The paper [27]examines how the attributes of atte—
nuation and isolation attachments impact the behavior
of SDOF VI systems equipped with two-sided bumpers
and gaps through experiments. They examined several
different experimental setups, with and without bum-
pers, with different bumpers, gaps, acceleration peaks,
and amplitude values, and made a parameter analysis.

Brzeski et al. [28] studied the stability of a coupled
system of two bodies excited with external harmonic
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forces that differ in phase interacting with soft impacts.
They proposed a methodology to narrow down the
possible solutions by carefully selecting the gap and
phase difference of the periodic excitation force.

Mélot et al. [29] studied the VI behavior of big gear
systems. Firstly, they made model reductions followed
by obtaining periodic solutions for the system by jointly
using the harmonic balance method and path-following
techniques such as arc-length numerical continuation
[30, 31]. The initiation and cessation of VI reactions are
analyzed by computing grazing bifurcations.

Papers [32, 33] investigated the VI behavior of a
harm\onically excited oscillator with two degrees of
freedom. They studied the variety and progression of
periodic impact motions, focusing on transitions to non-
periodic and chaotic motions, along with various bifur—
cation types and shifts between them. The impact
velocities and existence areas of various types of peri—
odic motions of the VI system are studied, focusing on
the influence of dynamic parameters within the sampled
parameter ranges. Papers [32, 33] differ only in physical
models, but the same analysis and methodology are
applied.

Liu and Chavez [34] focused on stabilizing a VI
capsule system under periodic excitation load. The
capsule can move both forward and backward along a
straight path. Their primary goal was to regulate this
motion direction. They showed that the system's motion
can be controlled by appropriately adjusting its initial
conditions without any modification to the system
parameters.

As in other areas of mathematics, physics, and
engineering sciences, in the area of VI systems, the
research trend is to use numerical methods [35, 36].
Those methods may lead to the wrong results if the
initial conditions are wrongly assumed, and for a certain
set of parameters, the solutions diverge. It is also
difficult to determine the areas where the solutions
converge to the exact solution. That is why analytical
solutions like those in this work are advantageous.
Certainly, numerical methods must be used for
significantlymore complex models, but this work can be
used to make a good assumption of the initial solution
so that a more complex problem can be solved.

Scientific publications [1,37,38] include the results
obtained by analyzing VI systems dynamics using
appropriate mathematical models. The analysis of the
model motion defines different modes of motion and
investigates the conditions for the existence of these
modes. In publication [1], Babicki investigates the peri—
odic motion of VI systems with a known period of
oscillation and presents the results that define periodic
motion’s stability.

The research of this paper follows this guideline.
Besides that, similar to [1, 13],in this paper, the period
of oscillation is equal or proportional to the period of
external excitation force. Compared to paper [1], here is
a presented phase plane with two different damping
decrements. Additionally, VI analysis in [1] includes
only odd numbers for a multiplicity of the mode, while
more general analysis is presented here, including both
even and odd numbers for the multiplicity of the mode,
ie. 1=1234,5,..
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Based on the analysis of VI systems, different mac—
hines can be constructed where the working part
performs periodic [1,39] and nonperiodic vibration
impacts [39,40], depending on the nature of the tech—
nological process. VI systems have vast applications in
engineering, including construction machines, casting
machines, transport machines, etc.

Figure 1. Vibratory Hammer:a) Driving sheet pile 400mm x
6m[41], b) Shema of machine driving sheet pile/beam/pipes
[6], c) Sheet pile driver [41], d) Sheet pile driver - Shema [6].

Figure 2. Hammer drill machine [42]: 1) cylinder, 2) piston,
3) striker, 4) swinging bearing, 5) engine gear

Figure 3. Vibratory rammer[43]: a) STEM Techno
STR81/STR82, b) Scheme of STEM Techno STR81/STR82:1)
gear, 2) wheel, 3) piston rod, 4) piston, 5) tamping plate, 6)
spring, 7) shock absorber.

Several machines can be constructed using a mathe—
matical model of a horizontal or vertical single-mass VI
system with two stationary stops, such as a vibro
hammer (Fig. 1), hammer drill machine (Fig. 2),
vibratory rammer (Fig. 3), etc. Vibro hammers, which
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are used to drive rods, pipes, and other elements into the
ground, represent a large part of the area of VI systems.
Figure 1 shows the appearance and scheme of the
vibratory hammer. A vibratory rammer (Fig 3.) is a
machine with periodic movement, which acts on the
surface of the soil to smooth out unevenness, as well as
to increase the density of the soil before laying asphalt,
concrete, etc.

The topic of this research is the analysis of a
horizontal straight-line motion of a single-mass VI
system with two symmetrical stops placed on both sides
of the oscillator when a periodic VI mode is realized in
the system. The motion analysis of the VI system is
done using a mathematical model shown in Figure 4.
The main result is the determination of the conditions
(areas) in which periodic VI modes exist. The results of
the research enable movement stability for the VI
system. All graphical results are presented by using
Mathcad 14 software.

2. MATHEMATICAL MODEL AND EQUATION OF
MOTION

Figure 4 shows a mathematical model of a horizontal
rectilinear motion of a single-mass VI system with two
symmetrical stopsplaced on both sides of the oscillator,
which is exposed to the force Fe = ¢, - y of spring with
stiffness cy, viscous damping force R, =by -y with

proportionality coefficient by, and external periodic
excitation force:

Kk
F(t)=) F-cos(i-Q-t+g) (1)
i=1

One fixed stop is placed at a distance y = A to the right

of the equilibrium position, i.e. point O. Another fixed
stop is at a distance y = —A to the left of the equilibrium

position, i.e. point O. The mass of the oscillator impacts
alternately to the right and left stops, so one period of
oscillator movementT =2z /Q consists of two equal
half-periods of movement T; = E, = z/Q.The first half-
period Ty includes the time of oscillator movement from
the impact to the right stop up to the impact to the left
stop.

In addition, the second half-period T, includes the
time of traveling of the VI oscillator from the impact
into the left stop up to the impact into the right stop.
Since all movement intervals are identical, it is suffi—
cient to examine just one interval of the oscillator's
motion between two consecutive impacts.

The motion of the dynamical system between two
successive impactspresented in Figure 4 can be
described with the following differential equation:

k
m-§+by-y+cy-y=F() =D F-cos(i-Q-t+g) (2)
i=1

The mass m of the oscillator is assumed to be
constant. Eq. (2) can be written in extended form as:

m-§+by -y+c,-y=Fcos(Q-t+g)+
+Fyc08(2-Q-t+ @y )+...+ R cos(k-Q-t+gy ).
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Figure 4. Mathematical model of a VI oscillator with two

stops

If both sides of equation (3) are divided by m, the
following equation can be obtained:

b c
y+—yy+—yy:icos(§2~t+¢l)+

m> m~ m @)
+%cos(2'§2~t+¢2)+...+%cos(k~Q~t+(pk).

b
If it is taken into consideration tha tn =2—y is the
m

c
damping constant: a)f; =—Y s the natural circular fre-
m

quency of the linear oscillator without stops, Q is the
circular frequency of the excitation force, ¢ is the initial

phase of the excitation forces P = i, P, = R ,
m m
o Bo= i the following equation is obtained:
m
y+2n-y+a)§-y:Plcos(Q-t+gol)+ ©)

+Pyc0s(2:Q-t+ ¢y )+..4 P, COS(k- Q-1+, ).

According to the theory of differential equations, the
general solution of (5) consists of the sum of the solu-
tions of the homogeneous part of the equation y} ,as
well as the particular solutions yip, Yap, ..., Ykp, Where the
solution of the homogeneous part is:

yh:e”'t(Blcos( a)i—nz-t)Jrstin( wﬁ—nz-t)] (6)

where the expression =,/a))2, —n? represents the

damped circular frequency.

The unknown constants B; and B, in equation (6)
areobtained by applying the conditions of periodic
motion which are defined by expressions (23), (24), (25)
and (26) in the following part of this paper.

If B1 = Dcos(d) and B, = -Dsin(d) are assumed,
equation (6) will take the following form:

Yh :e’n't[Dcos(ﬁ)-cos(W-tj— Dsin(6)~sin£m-tjj @)

If the equation cos(a+f) = cosacosp - sinasing is
used, the following is obtained:
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Yh = D.e " cos(Jw)z, -n? ~t+5) 8)
where D=/B2+B,? and tg(é‘):_%_

Further, as will be shown later in this paper, the
particular solutions yip, Yzp, ..., Yk Of the differential
equation (5) are determined.

At the beginning, only the first term on the right
hand side of (5) is taken into consideration, leading to

y+2n~y+a)>2,~y=Plcos(Q~t+¢>l) 9)
Then, the particular solution is assumed to be:
Yip = M1 COS(Q-1+ @ )+ Nysin(Q-1+¢) (10)

When the first and second derivatives of equation
(10) are determined and substituted into (9), the follo-
wing equations are obtained:

Pl(wﬁ—Qz)
Mj = >,
4n2.92+(a)§—92) )
P-2n-Q
Ny =

4n2~QZ+(a)§—QZ)2.

. . Q . .
After introducing p =— as a dimensionless frequ—

@y
z-b
ency andAy = y :@ as a damping decrement,
m~wy a)y
it is obtained
Yl(l— p2)
M= AV 2
2] peten
(12)
Ylﬂ p
N; = Z ,

[2fsers

K. . . .
Where Y; =—L is the static elongation of the spring

c
y
under the action of force Fj, wherei=1, ...k.
A2 2
| fKy(p)= {_VJ p? +(1— pz) is adopted, the
T
particular solution (10) has the form:
Yl(l— p2)

Yip = K.(p) cos(Q-t+gqp )+

(13)

+ K17(Zp) sin(Q-t+¢)

The general solution for the differential equation (9)
has the form y1 = yn + y1,, i.€.
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y1=D~e_”'tcos( a)>2,—n2~t+5)+

Y, (1- p? Yi— P

+Mcos(9-t+¢l)+ i
Ki(p) K

When only the last term on the right side of equation
(5) is taken into account, the particular solution is
determined as:

y+2n~y+w§-y=Pkcos(k-Q-tﬂq() (15)
The particular solution is assumed to be of the form:
Ykp = My cos(k-Q-t+gy )+ N sin(k-Q-t+¢y ). (16)

When the first and second derivatives of equation
(16) are determined and substituted into (15), the
following equations are obtained:

My = Pk(w)z'_kz'gz)

2
4n2-k2-92+(w§—k2-92)
P, -2n-Q-k

(17)

N, = >
4n? -k2-92+(a)§—k2~92)

After simple mathematical transformations of equa—
tions (17), following is obtained:

Yk(l—kZ-pz)
e Ay i 2 2 2 2)2
(ﬂ] ke-p +(1—k ~p)
Ny = Y"Aszp'k "
- Ay ? 2 2 2 2\2
[J k2. p +(1—k ~p)
T

Ay 2
If Kk(p)z[—yJ k? . p? +(1—k2 : p2) is adop—
T
ted, the particular solution (16) has the form:

Y, (1—|<2 : p2)

Yip =————=CoS(K-Q-t+ ¢, )+
kp Kk (P) ( ) 19)
Y Y pok
k™ p-k (k-0 )
+—*——sin(k-Q-t+ ¢
Ki (p)

The general solution for the differential equation
(15) has the for yi = yn + Yip , i.e.

yy =D-e " COS(Ja))Z, -n? ~t+5j+
Y, (1—k2 : p2)
Ky (P)
A
YL pk

+—2 _ sin(k-Q-t+g
Kk(p) ( k)

cos(k-Q-t+qp )+ (20)

FME Transactions



Finally, the particular solutions of the differential
equation (5) are determined for the case when there are
k addends on the right side. In that case k particular
solutions are obtained too.The general solution of (5) is

y=D.e " cos(Ja)i —n? -t+§)+

Y (1-i-p)
+y ——————cos(i-Q-t+g)+ (21)

a2 Ki(p)

K Ylﬂp|
+y —L—sin(i-Q-t+g).

ia Ki(p)

In analyzing the movement of the VI system,
observing a single interval of the oscillator’s motion
between two successive impacts is sufficient. Each
impact is part of a sequence of successive impacts, and
VI processes with an endless series of impacts are
referred to as infinite impacts [1,3].This paper inves—
tigates the periodic motion of a VI system, assuming
that the oscillation period is equal to or proportional to
the period of the excitation force. A key feature of VI
systems is the potential for various modes of motion.
Therefore, research on these systems should define all
possible motion types and analyze their stability. This
approach aims to identify and isolate movement modes
that could realistically occur in practice.

The effect of an impact is accounted for using the
restitution coefficient at each impact 0 < R < 1. For
R =0 impactis plastic, while for R =1it is absolutely
elastic. In this example, it is assumed that the coeffi-
cients of restitution on impact are the same for both
stops. Assuming the oscillator’s velocity is y_ just be—

fore an impact and y, just after the impact, these two
velocities are related by the following equation:

Yo =-R-y_. (22)

3. BOUNDARY CONDITIONS FOR THE EXISTENCE
OF PERIODIC VI MODES

The period of movement of the VI oscillator T = 27/Q
shown in Figure 4 consists of two equal half-periods of
movement T1 = T, = #/Q. Impacts occur alternately in
the right and left stops at constant intervals that are
proportional to the half-period of the excitation force
7-1/Q2, where | is the multiplicity of the mode.

For | = 1, the oscillator crosses the path from the
right to the left stop for one half-period of change in the
excitation force F(t). For | = 2 the oscillator travels from
the right to the left stop for two half-periods of change
in the excitation force F(t). For | = 3, the oscillator
crosses the path from the right to the left stop for three
half-periods of change in the excitation force F(t), and
S0 on.

The boundary conditions for the first half-
period T, of the oscillator movement are:

t=0,y(0)=A, y(0)=y,=-R-y_. (23)
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T=Tl M) =-a, Y=y (24)
where Eq. (23) denotes the beginning of the cycle, i.e.
the moment after impact to the right stop, while Eq.(24)
presents the end of the cycle, i.e., the moment before the
next impact to the left stop.

For the second half-period T, the following
boundary conditionsare introduced:

t=0,y(0)=-A, y(O)=y, =R-y_ (25)

T, =Ty =4, y(T) = v (26)

where Eq. (25) describe the beginning of the cycle, i.e
the moment after impact to the left stop, while Eq.(26)
representsthe end of the cycle, i.e, the moment before
the next impact to the right stop.

In the analysis of the oscillator movement, the first
half-period is observed. This period begins after the
impact to the right stop and lasts until the next impact to
the left stop. The boundary conditions (23) and (24) are
used in the calculation. The equation describing the
motion of the oscillator in the first half-period has the
form (14).

A
Y1~ p
T
Ki(p)

Y, (1— p? |
Ki(p)

are assumed, (14) is expressed as follows:

y=D-e M cos(,/w§ —n? -t+§j+Acos(Q-t+(pl +6) (27)

where

If Acos(5)= and 4sin(5)=—

A A
T T

,tg(5)——(l_p2).

The equation for A represents the amplitude of
excitation oscillations that are caused by the external

excitation force Fy(t) = F cos(Q-t+¢, ).

If equation (6) is used for solving the homogeneous
part of equation (5) and if w = ¢1 + J is assumed, then
(27) is expressed as follows:

y:e‘"'t(BlCOS(W't)JF stin( w?—nZ .tjj+ 28)

+4005(Q-1+y)

Yl(l— p2) ?
ki(p) | | Ka(p)

If small values of the viscous damping coefficient
are taken into consideration (i.e.n<<w,), then

O =i -1~y (ie.Q=w).

When this is taken into account, equation (28) has
the following form:

y=e M (Bl cos(wyt)+ B, sin(a)yt)) +Acos(Q-t+y). (29)

After taking the first time derivative of (29), velocity
is obtained as
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y=-n.e " (Bl cos(ayt)+B, sin(a)yt))+
+e M (—Bl @y sin (a)yt)+ B, cos(a)yt))— (30)
-A-Q-sin(Q-t+y).

The boundary conditions for the first half-period of
motion (23) and (24) are used to determine the constants
B, and B,. The procedure for determining the constants
B; and By is presented below.

After substituting the boundary conditions (23) into
equations (29) and (30), the following is obtained:

A =B+ Acos(y)

. : (31)
-R-y_=-n-B;+@,-B, - A-Q-sin(y).

When the second equation in (31) is divided by wy,
the following is obtained:

“R-V A
R-y_ :_Z_VBl+BZ_A. p.sin(y/) (32)
T

@y

After substituting the boundary conditions (24) into
(29) and (30), the following is obtained:

-A=e [Bicos(wy Qlj+ stm(a)y ”QID+
+Acos(z-1+y),
Qlj+ stm( Qljj+ (33)
7l

wl
_ni
-y_=-n-e [Blcos(
Q -l B R
+aoy-e —Bysin a)y 0 +B, cos wa
—A-Q-Sin(ﬂ'~|+l//).

When the second equation of equations (33) is
divided by wy, the following is obtained:

. A Ayl | I
i -
2, o e [Blcos[ > ]+stm( ) ]J+
Ayl
- | |
B - 34
+e [ Blsm[ . j+ Zcos[ . j] (34)

—A-p-sin(z-1+y)
In equation (34), the trigonometric function
sin(7z-1+y) should be tested as follows:
e whenl=1=sin(z-1+y)=-sin(y),
e whenl=2=sin(z-2+y)=sin(y),
o whenl=3=sin(7-3+y)=-sin(y),
o whenl=4=sin(7-4+y)=sin(y), etc.
Thus, when | is odd,the value —sin(y) is obtained,

and when | is even, the valuesin(y) is obtained.

When | is odd, i.e. | = 1,3,..., equation (34) has the
following form:
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1
ol e 2 [Blcos[ﬂj+825in[ﬂj]+
oy 2z p p

Ayl

(s

equation (34) has the

(3%)

When | is even, i.e. | = 2,4,...,
following form:

T
i BT [Blcos[ﬂ]+825in(ﬂ]]+
oy 2 p p

,LY'
+€ [ Blsm[ p|]+82cos[ pIJJ—A-p-sin(w).

The first equation in (33) can be written in the
following form:

(36)

Ayl

3 3
-A=¢e [Blcos[ > j+825|n( o n+ @7)

+Acos(z-1+y).
In equation (37), the trigonometric function
cos(z-1+y) should be tested as follows:
whenl =1= cos(7z-1+y)=—cos(y),
when 1 =2 = cos(z-2+y)=cos(y),
whenl =3 = cos(z-3+y)=-cos(y),
whenl =4 = cos(7z-4+y)=cos(y), etc.
Thus, when | is odd, the value —cos(y) is obtained,

and when lis even, the value cos(y)is obtained.

When | is odd, i.e. | = 1,3,..., equation (37) has the
following form:

_LY'
~A=¢e (Blcos( p|]+stm( plj]—Acos(z//) (38)

When | even, ie. | =24,...,
following form:

equation (37) has the

A
~A=e 2P (Blcos[ﬂ—;}stin[ﬂ—;j}Acos(y/) (39)

3.1 Regions for the existence of periodic VI regimes
when |is an odd number

For the case when | = 1,3,5,7... equations (31), (32),
(35), (38) are combined into one system:

A =B+ Acos(y),

-R-y_
@y

Ay B, — A-p-si
——EBH »—A-p-sin(y),
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Ayl

_A=e 2P [Bl COS[”_F;I] +B, sin[”—r;ljj —Acos(y) (40)

Ayl
. —A—y~e_Tp (Bl cos[ﬂj+ B, sin[”—'lj}
@y 27 p
Ayl
e 2P [—Blsin[”—r;lj+ B, cos(”—;j} A-p-sin(y)

From the system of equations (40) the following is
obtained:

Ble—ACOS((//),BZ :_Bl'dl’
a1

e 2P +cos(mj
p
. [ﬂ-lj '
sin| 22
p

(R+1)sin[”p'|]

d; = (41)

Ayl

- . A .
L cos(”lj+2ysin [”Ij
p T p (42)

0]

sin(y)=J="2s cos(w):%[l—ﬂJ (43)

a)y-A a)y-A

o=

After several transformations in (43), the velocity

becomes:
A2
1+ [1-(s2+1)|1-2
J ( 1 )( AZJ

D1~(812+1)

y_ = oy A (44)

The analysis of equation (44) identifies the regions
where VI modes exist. To begin, it is necessary to
determine the range of real velocity y_ values, which
can be obtained by assuming that the expression under
the square root in equation (44) is greater than zero,

ie.1-(S° +1)-(1- A?/A%) > 0. Based on this, the first

condition that defines the region containing real velocity
y_ values is expressed as follows:

Hs 1+L

45
A S12 “

For the case when 0< A < A, VI modes can exist in
the region where the stop is positioned within the
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bounds of the oscillation amplitude of the VI oscillator.
For A > Athe oscillation happens without any impact.

When the VI system moves, the oscillation path of
the oscillator does not exceed the fixed stops:

—A<x(t)<A or |x(t)|£A (46)

Based on the previous condition, it is not possible to
precisely find the regions where the VI modes exist.

To find the regions where VI modes exist, a second
condition is introduced: the velocity must be greater
than zero, i.e.

y_>0 (47)

The regions of existence of the VI are determined
from the equation for velocity (44), by examining when
condition (47) is satisfied. If the term under the square
root in equation (44) is assumed to be positive
(condition (45)), the velocity will have two distinct
values: one positive and one negative. To determine
when the velocity is positive, the sign of D; is analyzed
first. If both the numerator and denominator of D; have
the same sign, D; will always be positive.

The numerator and denominator are analyzed
separately as shown below.

Firstly, is analysed numerator in the equation for D;
where the value (R + 1) is always positive. Sine function
in the numerator is positive for p > |, and negative when
p < I, that means that the numerator is positive for p > |
and negative when p < I.

The graph of the denominator of the expression Dy,
given by function:

Ayl

Ayl

fl(p)=2005[ﬂj+e 2P 4o 2P
p

is shown in Figure 5. The graph was constructed for

I =1land Ay=027. The graph is positive for the

whole interval p €[0,%], and shows that the denomi-

nator is positive. At the end, it can be concluded that the
sign for D; is determined only by the sinusoidal
function of the numerator.

16

12

SIp) i

>

o1 Lo8 2.06 304 +.02

Figure 5. Graph of the function f;(p)

Mode I

First, the mode described with a minus sign in front
of the root in the velocity equation (44) is tested
together with whether the condition (47) is met.

In the equation (44) the velocity is positive if the
numerator is positive. This is obtained for the case when
the term under the root is less than onei.e.

1—(1— A2 /AZ)«(Sl2 +1) <1.From here is obtained that
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|A|> A . In the case when A > A, the system oscillates

without any impact.
Mode I

Furthermore, similarly to mode 1, the mode
described with the minus sign in front of the root in the
equation (44) is tested together with whether the
condition (47) is satisfied.

In this case, it is tested when the term under the root
in equation (44) is greater than one, i.e.

1-(@1—A%/A?%)-(5,% +1) > 1. From here is obtained that
|A|<A. In the case whenA < A, the system oscillates

with an impact.

After this, testing should be carried out when the
condition (47) is met. In this case, the numerator in (44)
is negative, so the denominator must be negative if the
velocity is to be positive. The denominator in equation
(44) is negative for D1 <0, i.e.,, whenp <.

Mode 111

Finally, the mode described with the plus sign in
front of the root in the velocity equation (44) is tested.
Together with this, the satisfaction of the condition (47)
is tested.

In this case, it is tested when the term under the root
in equation (44) is greater than one, i.e.

1-(@1—A%/A?%)-(5,% +1) >1. And from here is obtai-
ned that [A|<A. In the case whenA < A, the system

oscillates with an impact as well.

Afterwards, testing should be conducted when the
condition (47) is met. In this case, the numerator in (44)
is positive, so the denominator must be positive if the
velocity is to be positive. The denominator in equation
(44) is positive for D; >0, i.e., whenp <.

Figures 6 and 7 show the areas of existence of the VI
modes I, Il and IIl. The graphs were constructed
according to equation (45), where R = 0.7 and Ay = 0.2z,
when | =1 (Figure 6) and | =3 (Figure 7). Based on
the results obtained for these three modes, it can be
concluded that within frequency interval p, a VI mode
of multiplicity 1=1,3,... can exist for all real parameter
values that satisfy condition |[A| < A. When condition A
= A is met, one of the velocity values y_ becomes zero,
corresponding to an oscillator in contact with a stop, but
without an impact. Under condition A > A, the system
oscillates without impact, referred to as mode I.

Figure 6. Areas of existence of the VI modes for |=1
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Figure 7. Areas of existence of the VI modes for =3

From Figures 6 and 7, it is evident that with an
increase of multiplicity |, the areas of existence of the
VI also increase. The diagrams in Figures 6 and 7 make
it possible to determine the frequency interval of the VI
process for a known distance value A

Figure 8 illustrates a phase portrait of a VI oscillator
for period T, for two different values of the damping
decrement, i.e. for Ay = 0.1z and Ay = 0.2z when the
following data are known: F1 = 2N, Y1 = 2N, m=1kg,

wy=1s1, A=1m,p=15Q=1.5st.

“ o

Figure 8. Phase portrait of a VI oscillator

3.2 Regions for the existence of periodic VI regimes
when | isan even number

When | is even, i.e. | = 2/4,... equations (31), (32), (36),
(39) are combined into the following system:

A=B;+Acos(y),

_R.V A
F;yy— :_2_:;51+BZ—A~p-sin(x//),
4!
_A—e 2P [Blcos[”_;} stin[—'j}ACOS(w)v (48)
—wyy— __i C2p [B]_COS[”—;]+ BZSin[—jj‘F
Ay
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From the system (48), the following is obtained:

B, =A-Acos(y), B, =B;-dy - f
Ayl

= ) Ayl
e 2P _cos zl ZL
p _2A-e“P

o)l

D, = (R—l).sin[ﬂ;]

d, =

. A y_
Sm(w):Z[DZ.SZ.a)yAJFE] ,
y

A y_
cos(://):—[l—Dz- +2-D2-HJ
A wy-A

After several transformations in (49), the velocity
equation becomes:

2D, Dy)E+2HD

2D2(822+1) ot

y

2 2 (50)
J(-202+2D252E-2HD22) —4D22(522+1)[1—A2+2HD2+4D22H2+E2
A
+

~a)y~A

2D2-(822+1)

The velocity equation (50) is much more complex
than the velocity equation (44). Therefore, the research
is more complicated when | is even (1 =2,4,...).

In order to estimate when the velocity is positive, the
sign of D, is analyzed first in (49). If the numerator and
the denominator have the same signs, D, is always
positive.

Firstly, is analyzed the numerator in the equation for
Dy, where the value (R - 1) is always negative, because
R < 1. Sine function in the numerator is positive for p >
I, and negative when p <.

FME Transactions

The graph of the denominator of the expression Do,
Ayl Ayl
2y oy

given by function f2(p) :ZCos(ﬂ—;]—e 2p _g 2P,

is shown in Figure 9. The graph was constructed for | =
2 and Ay = 0.2z. The graph is negative for the whole
interval p e[0,00], and shows that the denominator is

negative. In the end, it can be concluded that the sign
for D, is determined only by the sinusoidal function of
the numerator.

M —T

108 2.06 3.04 4.02

P
Figure 9. Graph of the function f,(p)

The analysis of equation (50) determines the regions
where the VI modes exist. First, it is necessary to find
the region where the velocity y_ values are real. This is
achieved by ensuring that the term under the square root
in (50) is positive. Thus, the first condition defining the
area where real velocity y_ values are located is given

by:

o, 4D22(522+1)

A

2 2 (51)
\j4D22(522+1)(1+2D2H +4D22H2+E2) —(—2D2+2D252E—2HD22)

To find the regions of the VI, the second condition,
saying that the velocity (50) is greater than zero, is
introduced:

y_>0 (52)

The regions where VI exists are determined from the
velocity equation (50) by testing when the condition
(52) is met. After several transformations, equations
(53) and (54) are obtained as follows.

Al ! (53)
A~ 1+2D,H +4D,2H2 + E?

Equation (53) represents the area of existence of VI
forp>1.

A 1
—<
A [1+2D,H +4D,2H2 + E2

(54)

Equation (54) represents the area of existence of VI
forp<l

Figures 10 and 11 display the regions of existence of
the VI modes | and Il. The graphs are constructed
following equations (53) and (54), where R = 0.7 and Ay
= 0.2z, for | = 2 (Figure 10) and I = 4 (Figure 11). The
solid line represents equation (53), while the dashed one
represents equation (54).
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Figure 11. Regions where the VI modes exist for 1=4

Mode |

This mode of oscillator movement corresponds to
the plus sign before the square root in the equation for
velocity (50). Then, the conditions A < A and (52) are
satisfied, and the system oscillates with an impact.
Mode Il

This mode of oscillator movement corresponds to
the minus sign before the square root in the equation for
velocity (50). Then, the condition A < A and (52) are
met, and the system oscillates with an impact.
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Figure 12. Areas of existence of the VI modes for I=2 and
1=4

Figure 12 shows two graphs obtained for I=2and I=4
in the interval p e (0,50), where it can be seen that A <
A. This means that, when | is even (I = 2,4,...),there are

VI modes when A < A, as well as there are no VI modes
when A > A,
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4. ANALYSIS OF THE OBTAINED RESULTS

In this study, the VI oscillator from Figure 4 in Section
3 was analyzed. The results were obtained when | is odd
and whenl is even.

In Subsection 3.1, conditions (regions) where the
periodic VI modes exist for definedodd values of
parameterl. The calculation gives the equation for
velocity (44), from where the regions whereVI modes
exist are determined. First, the regions where the
velocity values are real are determined by assuming that
the term under the square root in equation (44) is
positive. This leads to the first condition given in
equation (45).According to condition (45), VI modes
can exist within the region where the stops are
positioned within the oscillation amplitude limits of the
VI oscillator, specifically for 0 <A < A (modes Il and
I11). Additionally, they can exist outside this region for
A> A (mode 1), where oscillations occur without
impacts on the stop.

To identify the regions where VI modes exist, a
second condition is introduced, stating that the velocity
must be greater than zero, as given in equation (47). The
areas of VI existence are determined by analyzing the
velocity equation (44) to see when this condition (47) is
satisfied. The results are illustrated in Figures 6 and 7,
which display the regions corresponding to VI modes I,
I, and IlIl.The graphs are constructed by equation
(45),where R = 0.7 and Ay = 0.2z, when I =1 and | = 3.
The figures demonstrate that as the multiplicity | inc—
reases, the regions where the modes exist also expand.

Diagrams presented in the first part of the paper, i.e.
subsection 3.1., are similar to results obtained by
Babicki [1] for odd values of the mode multiplicity I,
which shows that computation is correct and it presents
validation of the results of this paper.

In Subsection 3.2 are established the conditions (or
regions) where the periodic VI modes exist for even
values of I, specifically | = 2, 4, .... The velocity
equation (50) is derived to identify these regions, and
this equation is significantly more complex than the
previous velocity equation (44), making the analysis
more challenging when | is even.

Initially, the areas corresponding to real velocity
values are determined by assuming the term under the
square root in equation (50) is positive, which leads to
the first condition described in equation (51). To further
pinpoint the regions where VI modes exist, a second
condition is introduced, stating that the velocity must be
greater than zero, as given in equation (52). The regions
of VI mode existence are then derived from the velocity
equation (50) by checking when condition (52) holds.
After a series of transformations applied to equation
(50), the final expressions are given in equations (53)
and (54). The results are illustrated in Figures 10 and
11, which depict the regions where VI modes | and Il
exist.The graphs are constructed by (53) and (54),
whereR=0.7 and Ay = 0.2z, when | = 2 (Figure 10)
and | = 4 (Figure 11).

Based on the obtained results, it is evident that the
modes for odd | differ from those for even I. The
calculation shows that when | is odd then there are VI
modes when A < A, and vibration without impact mode
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can also exist when A > A (Figures 6 and 7). When | is
even there are VI modes when A < A, and they do not
exist when A > A. This is shown in Figure 12 where
both graphs are presented, one for | = 2 and another for |
=4 in the interval p € (0,50), where it can be seen that

A<A.

These results, illustrated in Figures 6, 7, 10, and 11,
enable the determination of the frequency interval for
the realization of the VI process when the distance value
is specified.

In Figure 8, a phase portrait of a VI oscillator is
depicted for one period T, illustrating the behavior for
two different values of the damping decrement, i.e. Ay =
0.1z and Ay = 0.2z. Figure 8 shows that when there is
less damping, the range of oscillations is wider.

5. CONCLUSION

This paper has presented a study of the horizontal
rectilinear motion of a single-mass VI system with two
symmetrical stops positioned on either side of the
oscillator. The VI system, depicted in Figure 4, was
modeled mathematically. The study focused on the
periodic motion of the system, where the oscillator's
motion period T = 27/Q is divided into two equal half-
periods, T1 = T, = n/Q. Impacts alternated between the
right and left stops, occurring at constant intervals
proportional to the half-period of the excitation force,
-1/Q, where I represents the mode multiplicity.

The research findings, which outline the conditions
(or regions) wherethe periodic VI modes exist and
ensure the system'’s stability, are illustrated in Figure 4.
These results made it possible to determine the
frequency interval for the VI process when the distance
value A is known(Figures 10 and 11).

This paper presents findings for a specified form and
structure of a VI system, comprising a single mass,
single spring, single damper, and two stops,
representing a single-degree-of-freedom VI system.
These results offer insights that may assist in analyzing
VI systems with varying structures, such as systems
with multiple degrees of freedom, different types of
external excitation forces, and more.

By analyzing the dynamic model of the VI system, it
was examined what kind of relations between the
parameters of the oscillator and the parameters of the
coercive force can establish such periodic movements,
in which the period of the impact of the oscillator on the
limiter is equal to or in proportion to the period of the
external force. This possibility of multiple regimes is a
characteristic of VI systems, and therefore the research
into the dynamics of VI systems in this paper includes
the definition of all theoretically possible movements, as
well as the analysis of the stability of the movement,
and this allows to single out the regimes that can exist in
practice.
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NOMENCLATURE

Fe elastic force of a spring (N)

Cy spring stiffness (N/m)

Fw viscous damping force (N)

by damping coefficient (Ns/m)

m mass (kg)

y displacement coordinate (m)

y velocity (m/s)

§ acceleration (m/s?)

A fixed distance (m)

F.Fi external periodic excitation force (N)

t time (s)

T period of oscillator movement (s)

Q external excitation frequency (s?)

O damped circular frequency (s?)

o initial phase of the external force (rad)
n viscous damping coefficient (Ns/m?)
wy angular frequency of free vibration (s
P normalized external force (N/kg)

Yh homogenous part of differential eg. solution
Yp particular part of differential equation solution

B1,B> integration constants of homogenous solution

D,o constants

M;i,N;  integration constants of particular solution

Ki constant

Yi static elongation of the spring under the action
of force Fi(m)

p dimensionless frequency

Ay damping decrement

R restitution coefficient

y_ oscillator’s velocity just before an impact (m/s)
A oscillator’s velocity just after an impact (m/s)

T, T, half periods of motion (s)

I multiplicity of mode

A vibration amplitude due to excitation force
Fa(m)

FME Transactions

v vibration phase due to excitation force F; (rad)

Acronyms

VI vibro-impact

SDOF single-degree-of-freedom

MEMS micro-electro-mechanical systems
AFM  atomic force microscopy

BUBPOYJAPHU PEXXUMU IPUT'YIIEHOT
JEJHOMACHOI' CUCTEMA CA J1BA ®PUKCHA
T'PAHUYHUKA

Jb. I'apuh, H. Hetunh

OBa crynWja WCHHTYje IMOHAIIake BHOPOYIapHOT
cHcTeMa ca MepUOJUYHUM KpeTameM, Ha KOjU ejCTBYje
CrOJbAlllHA TIPUHYJHA CHJa, a KOjU CaJpXXH Macy,
ONPYTY M aMOPTH3Ep, YMje je MPaBOJIHHH]CKO KpETame
OTPaHWYCHO Ca JBa CHUMCTPUYHA TpAHUYHHKA.
[lepuoguyHa cHojpalla MPUHYIHA CHia Tokpehe
CHCTEM, TPH YeMy je MHepHuoJ KpeTama OCHWIATopa
jeIHaK WIH je y cpa3Mepd ca MEepUOJOM CIIOJhAIlHE
npuHynHe cuie. [udepeHnujanna jeqHaunHa KpeTama
ca TpaHMYHUM YCJIOBHMA, peIllaBa Ce AHAIUTHYKU H
pa3matpajy ce pemiewa. CTyauja aHaIU3Upa Pa3IuunuTe
peXUMe TOHaIIaka U YKIbYUyje aHaU3y CTaOWITHOCTH.
Pesynratn wuctpaxuBama TnpuKasyjy ozapehuBame
ycioBa (00acTH) y KOjUMa TIOCTOje IEPUOTUYHHU
BUOPOYIApHU PEKHMH 3a MapHEe U HemapHe BPEIHOCTH
BHIIECTPYKOCTH pekuma. [lopen Tora, pesynraTtu
oMoryhaBajy na ce oxpean (hpeKBEHTHHM HHTEpBAI 3a
BHOpOYIapHH TMIpoIlec Kaga je IIO3HATO pPAacTOojame
n3melly  ukcHMX  TpaHHYHHKA. McTpakuBamem
JMHAMHUKEe BHOPOyJapHOI CHCTEMa y OBOM pamy
noOmjeHn Ccy pesydaTraTd Koju omoryhaBajy ma ce
IeUHAITY TEOPETCKH CBe MOTyhe BpcTe KpeTama, Kao
W pe3ynTatd Koju AeUHHUITY OONacTH CTaOMIIHOCTH
KpeTama, a To oMoryhasa J1a ce u3/Boje peXUMH KOjH
MOTY Jia TIOCTOje y MpaKcu. Pe3ynraT Koju cy no0ujeHu
y OBOM paay MOry C€ IPUMEHUTH 3a YCaBpIIaBame
nocrojehux W pa3Boj HOBMX BUOpOYZAapHUX anata |
MalllHa.
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