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This study examines the periodic vibro-impact (VI) behavior of an 
externally excited system containing mass, spring, and damper, whose 
rectilinear motion is bounded by two symmetrical stops. Periodic external 
coercive force is driving the system, with the period of the oscillator being 
one or proportional to the period of the external coercive force. The 
resulting differential equation of motion, coupled with boundary 
conditions, is solved analytically, and solutions are discussed. The study 
analyses different types of behavior and includes stability analysis. The 
research findings outline the determination of the conditions (areas) in 
which periodic VI modes exist for even and odd values of mode 
multiplicity. Additionally, the results made it possible to determine the 
frequency interval for the VI process when the distance between fixed stops 
is known. By investigating the dynamics of the VI system in this work, 
results were obtained that allow all possible types of motion to be 
theoretically defined, as well as results that define areas of motion 
stability, which allows one to find regimes that may exist in practice. The 
results obtained in this paper can be applied to improving existing and 
developing new vibro-impact tools and machines. 
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1. INTRODUCTION 
 

Vibro-impact (VI) systems with periodic motion have 
broad applications in industries and engineering bran–
ches, such asmechanical and civil engineering, mining, 
the food industry, etc. Generally, these systems are 
employed when the intervals between successive im–
pacts remain uniform, and the movement is caused by a 
coercive force,resulting in a range of effects. These 
impact-induced dynamic phenomena can be either 
detrimental or advantageous. To maximize efficiency, 
minimizing the harmful effects (damage) and ampli–
fying the beneficial ones is crucial [1-3].  

Many authors, such as Wiercigroch et al. [4] and 
Costa [5] do experimental investigation and practical 
development of VI systems. VI systems have applica–
tionsfor vibratory hammers, hammer drills, and vib–
ratory rammers [6] in energy-harvesting devices [7-9], 
transmission gearboxes [10], seismic protection [11], 
combustion engines [12], vibration mitigation devices 
[7], MEMS including AFM [13], etc. 

Many authors have studied periodic VI motion. 
Papers [14-17] describe the behavior of a system con–
taining one mass and single-degree-of-freedom (SDOF), 
which moves on a linear horizontal trajectory. Other 
authors [18,19] studied periodic dynamical systems with 
two degrees of freedom, representing a double-impact 

oscillator with many engineering applications. Systems 
in [19] are with variable positions of the stops, i.e., 
bumpers. Papers [20] and [21] present the results obta–
ined by the analysis of the stability of the periodic 
motion of VI systems with one bumper, which is in [20] 
fixed and in [21] movable. A similar study but with two 
stops is presented in [22]. Studies [23] and [24] present 
the analysis of the periodic motion of oscillatory sys–
tems, which collide with one and two stops. Limiters, 
bumpers, or stops in VI systems can be compliant as 
well [25]. 

VI devices can be used to absorbshock impacts, as 
presented in [26], where the efficiency of these attach–
ments is studied in passively absorbing and dissipating 
substantial amounts of impact energy through the exa–
mination of various setups involving primary linear 
oscillators coupled with VI attachments. 

Stefani et al. [11] investigated the potential benefits 
of utilizing impact occurrences in a two-sided harmo–
nically excited VI-isolated SDOF system and control–
ling the response.They examined seismic isolated cons–
truction, which moves regarding the ground during the 
earthquake and suggested inserting characteristic VI 
absorbers. 

The paper [27]examines how the attributes of atte–
nuation and isolation attachments impact the behavior 
of SDOF VI systems equipped with two-sided bumpers 
and gaps through experiments. They examined several 
different experimental setups, with and without bum–
pers, with different bumpers, gaps, acceleration peaks, 
and amplitude values, and made a parameter analysis. 

Brzeski et al. [28] studied the stability of a coupled 
system of two bodies excited with external harmonic 
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forces that differ in phase interacting with soft impacts. 
They proposed a methodology to narrow down the 
possible solutions by carefully selecting the gap and 
phase difference of the periodic excitation force. 

Mélot et al. [29] studied the VI behavior of big gear 
systems. Firstly, they made model reductions followed 
by obtaining periodic solutions for the system by jointly 
using the harmonic balance method and path-following 
techniques such as arc-length numerical continuation 
[30, 31]. The initiation and cessation of VI reactions are 
analyzed by computing grazing bifurcations.  

Papers [32, 33] investigated the VI behavior of a 
harm\onically excited oscillator with two degrees of 
freedom. They studied the variety and progression of 
periodic impact motions, focusing on transitions to non-
periodic and chaotic motions, along with various bifur–
cation types and shifts between them. The impact 
velocities and existence areas of various types of peri–
odic motions of the VI system are studied, focusing on 
the influence of dynamic parameters within the sampled 
parameter ranges. Papers [32, 33] differ only in physical 
models, but the same analysis and methodology are 
applied. 

Liu and Chavez [34] focused on stabilizing a VI 
capsule system under periodic excitation load. The 
capsule can move both forward and backward along a 
straight path. Their primary goal was to regulate this 
motion direction. They showed that the system's motion 
can be controlled by appropriately adjusting its initial 
conditions without any modification to the system 
parameters. 

As in other areas of mathematics, physics, and 
engineering sciences, in the area of VI systems, the 
research trend is to use numerical methods [35, 36]. 
Those methods may lead to the wrong results if the 
initial conditions are wrongly assumed, and for a certain 
set of parameters, the solutions diverge. It is also 
difficult to determine the areas where the solutions 
converge to the exact solution. That is why analytical 
solutions like those in this work are advantageous. 
Certainly, numerical methods must be used for 
significantlymore complex models, but this work can be 
used to make a good assumption of the initial solution 
so that a more complex problem can be solved. 

Scientific publications [1,37,38] include the results 
obtained by analyzing VI systems dynamics using 
appropriate mathematical models. The analysis of the 
model motion defines different modes of motion and 
investigates the conditions for the existence of these 
modes. In publication [1], Babicki investigates the peri–
odic motion of VI systems with a known period of 
oscillation and presents the results that define periodic 
motion's stability.  

The research of this paper follows this guideline. 
Besides that, similar to [1, 13],in this paper, the period 
of oscillation is equal or proportional to the period of 
external excitation force. Compared to paper [1], here is 
a presented phase plane with two different damping 
decrements. Additionally, VI analysis in [1] includes 
only odd numbers for a multiplicity of the mode, while 
more general analysis is presented here, including both 
even and odd numbers for the multiplicity of the mode, 
i.e. 1, 2,3, 4,5,...l =  

Based on the analysis of VI systems, different mac–
hines can be constructed where the working part 
performs periodic [1,39] and nonperiodic vibration 
impacts [39,40], depending on the nature of the tech–
nological process. VI systems have vast applications in 
engineering, including construction machines, casting 
machines, transport machines, etc. 

 
Figure 1. Vibratory Hammer:a) Driving sheet pile 400mm ｘ 
6m[41], b) Shema of machine driving sheet pile/beam/pipes 
[6], c) Sheet pile driver [41], d) Sheet pile driver - Shema [6]. 

 
Figure 2. Hammer drill machine [42]: 1) cylinder, 2) piston, 
3) striker, 4) swinging bearing, 5) engine gear 

 
Figure 3. Vibratory rammer[43]: a) STEM Techno 
STR81/STR82, b) Scheme of STEM Techno STR81/STR82:1) 
gear, 2) wheel, 3) piston rod, 4) piston, 5) tamping plate, 6) 
spring, 7) shock absorber. 

Several machines can be constructed using a mathe–
matical model of a horizontal or vertical single-mass VI 
system with two stationary stops, such as a vibro 
hammer (Fig. 1), hammer drill machine (Fig. 2), 
vibratory rammer (Fig. 3), etc. Vibro hammers, which 
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are used to drive rods, pipes, and other elements into the 
ground, represent a large part of the area of VI systems. 
Figure 1 shows the appearance and scheme of the 
vibratory hammer. A vibratory rammer (Fig 3.) is a 
machine with periodic movement, which acts on the 
surface of the soil to smooth out unevenness, as well as 
to increase the density of the soil before laying asphalt, 
concrete, etc. 

The topic of this research is the analysis of a 
horizontal straight-line motion of a single-mass VI 
system with two symmetrical stops placed on both sides 
of the oscillator when a periodic VI mode is realized in 
the system. The motion analysis of the VI system is 
done using a mathematical model shown in Figure 4. 
The main result is the determination of the conditions 
(areas) in which periodic VI modes exist. The results of 
the research enable movement stability for the VI 
system. All graphical results are presented by using 
Mathcad 14 software. 

 
2. MATHEMATICAL MODEL AND EQUATION OF 

MOTION 
 

Figure 4 shows a mathematical model of a horizontal 
rectilinear motion of a single-mass VI system with two 
symmetrical stopsplaced on both sides of the oscillator, 
which is exposed to the force Fe = cy · y of spring with 
stiffness cy, viscous damping force w yF b y= ⋅   with 
proportionality coefficient by, and external periodic 
excitation force: 

( )
1

( ) cos
k

i i
i

F t F i t ϕ
=

= ⋅ ⋅Ω ⋅ +∑     (1) 

One fixed stop is placed at a distance y = ∆  to the right 
of the equilibrium position, i.e. point O. Another fixed 
stop is at a distance y = −∆  to the left of the equilibrium 
position, i.e. point O. The mass of the oscillator impacts 
alternately to the right and left stops, so one period of 
oscillator movement 2 /T π= Ω  consists of two equal 
half-periods of movement T1 = Е2 = π/Ω.The first half-
period T1 includes the time of oscillator movement from 
the impact to the right stop up to the impact to the left 
stop.  

In addition, the second half-period T2 includes the 
time of traveling of the VI oscillator from the impact 
into the left stop up to the impact into the right stop. 
Since all movement intervals are identical, it is suffi–
cient to examine just one interval of the oscillator's 
motion between two consecutive impacts. 

The motion of the dynamical system between two 
successive impactspresented in Figure 4 can be 
described with the following differential equation: 

( )
1

( ) cos .
k

y y i i
i

m y b y c y F t F i t ϕ
=

⋅ + ⋅ + ⋅ = = ⋅ ⋅Ω ⋅ +∑   (2) 

The mass m of the oscillator is assumed to be 
constant. Eq. (2) can be written in extended form as: 

( )
( ) ( )

1 1

2 2

cos

cos 2 ... cos .
y y

k k

m y b y c y F t

F t F k t

ϕ

ϕ ϕ

⋅ + ⋅ + ⋅ = Ω⋅ + +

+ ⋅Ω ⋅ + + + ⋅Ω ⋅ +

 
 (3) 

 
Figure 4. Mathematical model of a VI oscillator with two 
stops 

If both sides of equation (3) are divided by m, the 
following equation can be obtained: 

( )

( ) ( )

1
1

2
2

cos

cos 2 ... cos .

y y

k
k

b c F
y y y t

m m m
FF

t k t
m m

ϕ

ϕ ϕ

+ + = Ω⋅ + +

+ ⋅Ω ⋅ + + + ⋅Ω ⋅ +

 

  (4)      

If it is taken into consideration tha t
2

yb
n

m
=  is the 

damping constant: 2 y
y

c
m

ω =  is the natural circular fre–

quency of the linear oscillator without stops,Ω  is the 
circular frequency of the excitation force,ϕ  is the initial 

phase of the excitation forces 1
1

F
P

m
= , 2

2
F

P
m

= , 

…, k
k

F
P

m
= , the following equation is obtained: 

( )
( ) ( )

2
1 1

2 2

2 cos

cos 2 ... cos .
y

к к

y n y y P t

P t P к t

ω ϕ

ϕ ϕ

+ ⋅ + ⋅ = Ω⋅ + +

+ ⋅Ω ⋅ + + + ⋅Ω ⋅ +

 
   (5) 

According to the theory of differential equations, the 
general solution of (5) consists of the sum of the solu–
tions of the homogeneous part of the equation hy ,as 
well as the particular solutions y1p, y2p, …, ykp, where the 
solution of the homogeneous part is: 

2 2 2 2
1 2cos sinn t

h y yy e B n t B n tω ω− ⋅     = − ⋅ + − ⋅        
  (6) 

where the expression 2 2
1 y nωΩ = − represents the 

damped circular frequency. 
The unknown constants B1 and B2 in equation (6) 

areobtained by applying the conditions of periodic 
motion which are defined by expressions (23), (24), (25) 
and (26) in the following part of this paper. 

If B1 = Dcos(δ) and B2 = -Dsin(δ) are assumed, 
equation (6) will take the following form: 

( ) ( )2 2 2 2cos cos sin sinn ty e D n t D n th y yδ ω δ ω
    − ⋅= ⋅ − ⋅ − ⋅ − ⋅    

    
  (7) 

If the equation cos(α+β) = cosαcosβ - sinαsinβ is 
used, the following is obtained: 
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2 2cosn t
h yy D e n tω δ− ⋅  = ⋅ − ⋅ + 

 
          (8) 

where 2 2
1 2D B B= +   and ( ) 2

1

B
tg

B
δ = − . 

Further, as will be shown later in this paper, the 
particular solutions y1p, y2p, …, ykp 

of the differential 
equation (5) are determined.  

At the beginning, only the first term on the right 
hand side of (5) is taken into consideration, leading to 

( )2
1 12 cosyy n y y P tω ϕ+ ⋅ + ⋅ = Ω⋅ +       (9) 

Then, the particular solution is assumed to be: 

( ) ( )1 1 1 1 1cos sinpy М t N tϕ ϕ= Ω⋅ + + Ω⋅ +   (10) 

When the first and second derivatives of equation 
(10) are determined and substituted into (9), the follo–
wing equations are obtained: 

( )
( )

( )

2 2
1

1 22 2 2 2

1
1 22 2 2 2

,
4

2
.

4

y

y

y

P
M

n

P n
N

n

ω

ω

ω

−Ω
=

⋅Ω + −Ω

⋅ ⋅Ω
=

⋅Ω + −Ω

                (11) 

After introducing
y

p
ω
Ω

=
 
as a dimensionless frequ–

ency and 2y
y

y y

b n
m
π π
ω ω

⋅
∆ = =

⋅
 
as a damping decrement, 

it is obtained 

( )
( )

( )

2
1

1 2 22 2

1
1 2 22 2

1
,

1

,

1

y

x

y

Y p
M

p p

Y p
N

p p

π

π

π

−
=

∆ 
+ − 

 
∆

=
∆ 

+ − 
 

 (12) 

Where i
i

y

F
Y

c
=  is the static elongation of the spring 

under the action of force  Fi, where i = 1, …k. 

I f ( ) ( )
2

22 2
1 1yK p p p

π

∆ 
= + −  
 

 is adopted, the 

particular solution (10) has the form: 

( )
( ) ( )

( ) ( )

2
1

1 1
1

1
1

1

1
cos

sin

p

x

Y p
y t

K p

Y p
t

K p

ϕ

π ϕ

−
= Ω⋅ + +

∆

+ Ω⋅ +

  (13) 

The general solution for the differential equation (9) 
has the form y1 =  yh + y1p, i.e. 

( )
( ) ( ) ( ) ( )

2 2
1

2
11

1 1
1 1

cos

1
cos sin

n t
y

x

y D e n t

Y pY p
t t

K p K p

ω δ

πϕ ϕ

− ⋅  = ⋅ − ⋅ + + 
 

∆
−

+ Ω⋅ + + Ω⋅ +

(14) 

When only the last term on the right side of equation 
(5) is taken into account, the particular solution is 
determined as: 

( )22 cosy k ky n y y P k tω ϕ+ ⋅ + ⋅ = ⋅Ω ⋅ +       (15) 

The particular solution is assumed to be of the form: 

( ) ( )cos sin .kp k k k ky M k t N k tϕ ϕ= ⋅Ω ⋅ + + ⋅Ω ⋅ +   (16) 

When the first and second derivatives of equation 
(16) are determined and substituted into (15), the 
following equations are obtained: 

( )
( )

( )

2 2 2

22 2 2 2 2 2

22 2 2 2 2 2

4

2

4

k y
k

y

k
k

y

P k
M

n k k

P n k
N

n k k

ω

ω

ω

− ⋅Ω
=

⋅ ⋅Ω + − ⋅Ω

⋅ ⋅Ω ⋅
=

⋅ ⋅Ω + − ⋅Ω

    (17) 

After simple mathematical transformations of equa–
tions (17), following is obtained: 

( )
( )

( )

2 2

2 22 2 2 2

2 22 2 2 2

1

1

1

k
k

y

x
k

k
y

Y k p
M

k p k p

Y p k
N

k p k p

π

π

π

− ⋅
=

∆ 
⋅ + − ⋅ 

 
∆

⋅
=

∆ 
⋅ + − ⋅ 

 

 (18)  

If ( ) ( )
2

22 2 2 21y
kK p k p k p

π

∆ 
= ⋅ + − ⋅  
 

 is adop–

ted, the particular solution (16) has the form: 

( )
( ) ( )

( ) ( )

2 21
cos

sin

k
kp k

k

y
k

k
k

Y k p
y k t

K p

Y p k
k t

K p

ϕ

π ϕ

− ⋅
= ⋅Ω ⋅ + +

∆
⋅

+ ⋅Ω ⋅ +

   (19) 

The general solution for the differential equation 
(15) has the for yk = yh + ykp , i.e. 

( )
( ) ( )

( ) ( )

2 2

2 2

cos

1
cos

sin

n t
k y

k
k

k

y
k

k
k

y D e n t

Y k p
k t

K p

Y p k
k t

K p

ω δ

ϕ

π ϕ

− ⋅  = ⋅ − ⋅ + + 
 

− ⋅
+ ⋅Ω ⋅ + +

∆
⋅

+ ⋅Ω ⋅ +

  (20) 
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Finally, the particular solutions of the differential 
equation (5) are determined for the case when there are 
k addends on the right side. In that case k particular 
solutions are obtained too.The general solution of (5) is 

( )
( ) ( )

( ) ( )

2 2

2 2

1

1

cos

1
cos

sin .

n t
y

k i
i

ii

xk i
i

ii

y D e n t

Y i p
i t

K p

Y p i
i t

K p

ω δ

ϕ

π ϕ

− ⋅

=

=

 = ⋅ − ⋅ + + 
 

− ⋅
+ ⋅Ω ⋅ + +

∆
⋅

+ ⋅Ω ⋅ +

∑

∑

  (21) 

In analyzing the movement of the VI system, 
observing a single interval of the oscillator’s motion 
between two successive impacts is sufficient. Each 
impact is part of a sequence of successive impacts, and 
VI processes with an endless series of impacts are 
referred to as infinite impacts [1,3].This paper inves–
tigates the periodic motion of a VI system, assuming 
that the oscillation period is equal to or proportional to 
the period of the excitation force. A key feature of VI 
systems is the potential for various modes of motion. 
Therefore, research on these systems should define all 
possible motion types and analyze their stability. This 
approach aims to identify and isolate movement modes 
that could realistically occur in practice. 

The effect of an impact is accounted for using the 
restitution coefficient at each impact 0 ≤ R ≤ 1. For 

0R =  impactis plastic, while for 1R = it is absolutely 
elastic. In this example, it is assumed that the coeffi–
cients of restitution on impact are the same for both 
stops. Assuming the oscillator’s velocity is y−  just be–
fore an impact and y+  just after the impact, these two 
velocities are related by the following equation: 

y R y+ −= − ⋅  .                             (22) 
 

3. BOUNDARY CONDITIONS FOR THE EXISTENCE 
OF PERIODIC VI MODES 

 
The period of movement of the VI oscillator T = 2π/Ω  
shown in Figure 4 consists of two equal half-periods of 
movement T1 = T2 = π/Ω. Impacts occur alternately in 
the right and left stops at constant intervals that are 
proportional to the half-period of the excitation force 
π·l/Ω, where l  is the multiplicity of the mode. 

For l = 1, the oscillator crosses the path from the 
right to the left stop for one half-period of change in the 
excitation force F(t). For l = 2 the oscillator travels from 
the right to the left stop for two half-periods of change 
in the excitation force ( )F t . For l = 3, the oscillator 
crosses the path from the right to the left stop for three 
half-periods of change in the excitation force F(t), and 
so on. 

The boundary conditions for the first half-
period 1T of the oscillator movement are: 

0t = , (0)y = ∆ ,   (0)y y R y+ −= = − ⋅   .  (23) 

1
lT π ⋅

=
Ω

, 1( )y T = −∆ ,   1( )y T y−= −  .          (24) 

where Eq. (23) denotes the beginning of the cycle, i.e. 
the moment after impact to the right stop, while Eq.(24) 
presents the end of the cycle, i.e., the moment before the 
next impact to the left stop. 

For the second half-period T2, the following 
boundary conditionsare introduced: 

0t = , (0)y = −∆ ,  (0)y y R y+ −= = ⋅    (25) 

2
lT π ⋅

=
Ω

, 2( )y T = ∆ , 2( )y T y−=   (26) 

where Eq. (25) describe the beginning of the cycle, i.e 
the moment after impact to the left stop, while Eq.(26) 
representsthe end of the cycle, i.e, the moment before 
the next impact to the right stop. 

In the analysis of the oscillator movement, the first 
half-period is observed. This period begins after the 
impact to the right stop and lasts until the next impact to 
the left stop. The boundary conditions (23) and (24) are 
used in the calculation. The equation describing the 
motion of the oscillator in the first half-period has the 
form (14). 

If ( )
( )
( )

2
1

1

1
cos

Y p
А

K p
δ

−
=

 
and ( ) ( )

1

1
sin

yY p
А

K p
πδ

∆

= −  

are assumed, (14) is expressed as follows:  

( )2 2
1cos cosn t

yy D e n t А tω δ ϕ δ− ⋅  = ⋅ − ⋅ + + Ω⋅ + + 
 

  (27) 

where 

( )
( ) ( )

222
11

1 1

1
,

xY pY p
А

K p K p
π
∆  −   = + −  

       

( ) ( )21

y p
tg

p
πδ

∆

= −
−

. 

The equation for A represents the amplitude of 
excitation oscillations that are caused by the external 
excitation force ( )1 1 1( ) cosF t F t ϕ= Ω ⋅ + .              

If equation (6) is used for solving the homogeneous 
part of equation (5) and if ψ = φ1 + δ is assumed, then 
(27) is expressed as follows: 

( )

2 2 2 2
1 2cos sin

cos

n t
y yy e B n t B n t

А t

ω ω

ψ

− ⋅     = − ⋅ + − ⋅ +        
+ Ω⋅ +   

(28)

 
If small values of the viscous damping coefficient 

are taken into consideration (i.e. yn ω<< ), then                 

2 2
1 y ynω ωΩ = − ≈   (i.e. 1 yωΩ = ). 

When this is taken into account, equation (28) has 
the following form: 

( ) ( )( ) ( )1 2cos sin cos .n t
y yy e B t B t A tω ω ψ− ⋅= + + Ω⋅ +   (29)                                        

After taking the first time derivative of (29), velocity 
is obtained as 
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( ) ( )( )
( ) ( )( )

( )

1 2

1 2

cos sin

sin cos

sin .

n t
y y

n t
y y y y

y n e B t B t

e B t B t

A t

ω ω

ω ω ω ω

ψ

− ⋅

− ⋅

= − ⋅ + +

+ − + −

− ⋅Ω ⋅ Ω ⋅ +



  (30) 

The boundary conditions for the first half-period of 
motion (23) and (24) are used to determine the constants 
B1 and B2. The procedure for determining the constants 
B1 and B2 is presented below.  

After substituting the boundary conditions (23) into 
equations (29) and (30), the following is obtained: 

( )
( )

1

1 2

cos

sin .y

B A

R y n B B A

ψ

ω ψ−

∆ = +

− ⋅ = − ⋅ + ⋅ − ⋅Ω ⋅
  (31) 

When the second equation in (31) is divided by ωy, 
the following is obtained: 

( )1 2 sin
2

y

y

R y
B B A p ψ

ω π
− ∆− ⋅
= − + − ⋅ ⋅


         (32) 

After substituting the boundary conditions (24) into 
(29) and (30), the following is obtained:  

( )

( )

1 2

1 2

1 2

cos sin

cos ,

cos sin

sin cos

sin .

n t
y y

ln
y y

ln
y y y

l le B B

A l

l ly n e B B

l le B B

A l

π

π

π πω ω

π ψ

π πω ω

π πω ω ω

π ψ

− ⋅

⋅
−

Ω
−

⋅
−

Ω

 ⋅ ⋅    −∆ = + +    Ω Ω    
+ ⋅ +

 ⋅ ⋅    − = − ⋅ + +    Ω Ω    

 ⋅ ⋅    + ⋅ − + −    Ω Ω    
− ⋅Ω ⋅ ⋅ +

  (33) 

When the second equation of equations (33) is 
divided by ωy, the following is obtained: 

( )

2
1 2

2
1 2

cos sin
2

sin cos

sin

ly
y p

y
ly

p

y l le B B
p p

l le B B
p p

A p l

π π
ω π

π π

π ψ

∆
−

−

∆
−

∆  −    ⋅ ⋅
= − ⋅ + +    

    

    ⋅ ⋅
+ − + −    

    
− ⋅ ⋅ ⋅ +



 (34) 

In equation (34), the trigonometric function 
( )sin lπ ψ⋅ +  should be tested as follows: 

• when ( ) ( )1 sin 1 sinl π ψ ψ= ⇒ ⋅ + = − ,  

• when ( ) ( )2 sin 2 sinl π ψ ψ= ⇒ ⋅ + = , 

• when ( ) ( )3 sin 3 sinl π ψ ψ= ⇒ ⋅ + = − ,  

• when ( ) ( )4 sin 4 sinl π ψ ψ= ⇒ ⋅ + = , etc. 

Thus, when l is odd,the value ( )sin ψ−  is obtained, 

and when l is even, the value ( )sin ψ  is obtained. 
When l is odd, i.e. l = 1,3,…, equation (34) has the 

following form:  
 

( )

2
1 2

2
1 2

cos sin
2

sin cos sin

ly
y p

y
ly

p

y l le B B
p p

l le B B A p
p p

π π
ω π

π π ψ

∆
−

−

∆
−

∆  −    ⋅ ⋅
= − ⋅ + +    

    

    ⋅ ⋅
+ − + + ⋅ ⋅    

    



   (35) 

When l is even, i.e. l = 2,4,…, equation (34) has the 
following form:  

( )

2
1 2

2
1 2

cos sin
2

sin cos sin .

ly
y p

y
ly

p

y l le B B
p p

l le B B A p
p p

π π
ω π

π π ψ

∆
−

−

∆
−

∆  −    ⋅ ⋅
= − ⋅ + +    

    

    ⋅ ⋅
+ − + − ⋅ ⋅    

    



 (36) 

The first equation in (33) can be written in the 
following form: 

( )

2
1 2cos sin

cos .

ly
p l le B B

p p

A l

π π

π ψ

∆
−     ⋅ ⋅

−∆ = + +    
    

+ ⋅ +

  (37) 

In equation (37), the trigonometric function 
( )cos lπ ψ⋅ +  should be tested as follows: 

when ( ) ( )1 cos 1 cosl π ψ ψ= ⇒ ⋅ + = − ,  

when ( ) ( )2 cos 2 cosl π ψ ψ= ⇒ ⋅ + = ,  

when ( ) ( )3 cos 3 cosl π ψ ψ= ⇒ ⋅ + = − ,  

when ( ) ( )4 cos 4 cosl π ψ ψ= ⇒ ⋅ + = , etc. 

Thus, when l is odd, the value ( )cos ψ−   is obtained, 

and when lis even, the value ( )cos ψ is obtained.  
When l is odd, i.e. l = 1,3,…, equation (37) has the 

following form: 

( )2
1 2cos sin cos

ly
p l le B B A

p p
π π ψ

∆
−     ⋅ ⋅

−∆ = + −    
    

  (38) 

When l even, i.e. l = 2,4,…, equation (37) has the 
following form: 

( )2
1 2cos sin cos

ly
p l le B B A

p p
π π ψ

∆
−     ⋅ ⋅

−∆ = + +    
    

 (39) 

 

3.1 Regions for the existence of periodic VI regimes 
when I is an odd number 

 
For the case when l = 1,3,5,7… equations (31), (32), 
(35), (38) are combined into one system:                                       

( )1 cos ,B A ψ∆ = +    

( )1 2 sin
2

y

y

R y
B B A p ψ

ω π
− ∆− ⋅
= − + − ⋅ ⋅


,  
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( )2
1 2cos sin cos

ly
p l le B B A

p p
π π ψ

∆
−     ⋅ ⋅

−∆ = + −    
      

(40) 

( )

2
1 2

2
1 2

cos sin
2

sin cos sin

ly
y p

y
ly

p

y l le B B
p p

l le B B A p
p p

π π
ω π

π π ψ

∆
−

−

∆
−

∆  −    ⋅ ⋅
= − ⋅ + +    

    

    ⋅ ⋅
+ − + + ⋅ ⋅    

    



 

From the system of equations (40) the following is 
obtained:     

( )1 cosB A ψ= ∆ − , 2 1 1B B d= − ⋅ ,  

2

1

cos
,

sin

ly
p le

p
d

l
p

π

π

∆
 ⋅

+  
 =

 ⋅
 
   

(41) 

( )
1

2 2

1 sin

2cos

l ly y
p p

lR
p

D
l e e

p

π

π
∆ ∆

−

 ⋅
+  

 =

 ⋅
+ + 

   

, 

2

1
1

cos sin
21

sin

ly
yp l le

p pRS
p D l

p

π π
π

π

∆ 
∆   ⋅ ⋅ + +    

    = −
  ⋅

  
  

 

 (42) 

( ) 1
1sin

y

y D
S

A
ψ

ω
− ⋅= ⋅
⋅


,  ( ) 1cos 1

y

y D
A

ψ
ω
− ⋅∆

= −  ⋅∆ 


  (43) 

After several transformations in (43), the velocity 
becomes: 

( )
( )

2
2

1 2

2
1 1

1 1 1 1

1
y

AS

y
D S

ω−

 
± − + ⋅ −  ∆ = ⋅ ⋅∆

⋅ +
   (44) 

The analysis of equation (44) identifies the regions 
where VI modes exist. To begin, it is necessary to 
determine the range of real velocity y− values, which 
can be obtained by assuming that the expression under 
the square root in equation (44) is greater than zero, 
i.e. ( ) ( )2 2 2

11 1 1 / 0S A− + ⋅ − ∆ ≥ . Based on this, the first 

condition that defines the region containing real velocity 
y−  values is expressed as follows: 

2
1

11
A S

∆
≤ +                (45) 

For the case when 0 A< ∆ < , VI modes can exist in 
the region where the stop is positioned within the 

bounds of the oscillation amplitude of the VI oscillator. 
For A∆ > the oscillation happens without any impact.  

When the VI system moves, the oscillation path of 
the oscillator does not exceed the fixed stops: 

( )x t−∆ ≤ ≤ ∆    or ( )x t ≤ ∆
 

 (46) 

Based on the previous condition, it is not possible to 
precisely find the regions where the VI modes exist. 

To find the regions where VI modes exist, a second 
condition is introduced: the velocity must be greater 
than zero, i.e. 

0y− >    (47) 

The regions of existence of the VI are determined 
from the equation for velocity (44), by examining when 
condition (47) is satisfied. If the term under the square 
root in equation (44) is assumed to be positive 
(condition (45)), the velocity will have two distinct 
values: one positive and one negative. To determine 
when the velocity is positive, the sign of D1 is analyzed 
first. If both the numerator and denominator of D1 have 
the same sign,  D1 will always be positive. 

The numerator and denominator are analyzed 
separately as shown below. 

Firstly, is analysed numerator in the equation for D1 where the value (R + 1) is always positive. Sine function 
in the numerator is positive for p > l, and negative when 
p < l, that means that the numerator is positive for p > l 
and negative when p < l. 

The graph of the denominator of the expression D1, 
given by function: 

2 21( ) 2cos ,

l ly y
p plf p e e

p
π

∆ ∆
− ⋅

= + + 
   

is shown in  Figure 5. The graph was constructed for 
1l = and 0.2y π∆ = . The graph is positive for the 

whole interval [0, ]p∈ ∞ , and shows that the denomi–
nator is positive. At the end, it can be concluded that the 
sign for D1 is determined only by the sinusoidal 
function of the numerator. 

 
Figure 5. Graph of the function f1(p)  

Mode I 
First, the mode described with a minus sign in front 

of the root in the velocity equation (44) is tested 
together with whether the condition (47) is met. 

In the equation (44) the velocity is positive if the 
numerator is positive. This is obtained for the case when 
the term under the root is less than one,i.e. 

( ) ( )2 2 2
11 1 / 1 1A S− − ∆ ⋅ + < .From here is obtained that 
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A∆ >  . In the case when A∆ > , the system oscillates 
without any impact. 
Mode II 

Furthermore, similarly to mode 1, the mode 
described with the minus sign in front of the root in the 
equation (44) is tested together with whether the 
condition (47) is satisfied. 

In this case, it is tested when the term under the root 
in equation (44) is greater than one, i.e. 

2 2 2
11 (1 / ) ( 1) 1A S− − ∆ ⋅ + > . From here is obtained that 

A∆ < . In the case when A∆ < , the system oscillates 
with an impact. 

After this, testing should be carried out when the 
condition (47) is met. In this case, the numerator in (44) 
is negative, so the denominator must be negative if the 
velocity is to be positive. The denominator in equation 
(44) is negative for D1 < 0 , i.e., when p < l. 

 
Mode III 

Finally, the mode described with the plus sign in 
front of the root in the velocity equation (44) is tested. 
Together with this, the satisfaction of the condition (47) 
is tested. 

In this case, it is tested when the term under the root 
in equation (44) is greater than one, i.e. 

2 2 2
11 (1 / ) ( 1) 1A S− − ∆ ⋅ + > . And from here is obtai–

ned that A∆ < . In the case when A∆ < , the system 
oscillates with an impact as well. 

Afterwards, testing should be conducted when the 
condition (47) is met. In this case, the numerator in (44) 
is positive, so the denominator must be positive if the 
velocity is to be positive. The denominator in equation 
(44) is positive for D1 > 0 , i.e., when p < l. 

Figures 6 and 7 show the areas of existence of the VI 
modes I, II and III. The graphs were constructed 
according to equation (45), where R = 0.7 and Δy = 0.2π, 
when 1l =  (Figure 6) and 3l =  (Figure 7). Based on 
the results obtained for these three modes, it can be 
concluded that within frequency interval p, a VI mode 
of multiplicity l=1,3,… can exist for all real parameter 
values that satisfy condition |Δ| < A. When condition Δ 
= A  is met, one of the velocity values y− becomes zero, 
corresponding to an oscillator in contact with a stop, but 
without an impact. Under condition A∆ > , the system 
oscillates without impact, referred to as mode I.  

 
Figure 6. Areas of existence of the VI modes for l=1 

 
Figure 7. Areas of existence of the VI modes for l=3   

From Figures 6 and 7, it is evident that with an 
increase of multiplicity l, the areas of existence of the 
VI also increase. The diagrams in Figures 6 and 7 make 
it possible to determine the frequency interval of the VI 
process for a known distance value∆ . 

Figure 8 illustrates a phase portrait of a VI oscillator 
for period T, for two different values of the damping 
decrement, i.e. for Δy = 0.1π  and Δy = 0.2π when the 
following data are known: F1 = 2N, Y1 = 2N, 1m kg= , 
ωy = 1s-1, Δ = 1m, p = 1.5, Ω = 1.5s-1 .  

 
Figure 8. Phase portrait of a VI oscillator 

 

3.2 Regions for the existence of periodic VI regimes 
when l isan even number 
 

When l is even, i.e. l = 2,4,… equations (31), (32), (36), 
(39) are combined into the following system: 

( )

( )

( )

1

1 2

2
1 2

2
1 2

2
1 2

cos ,

sin ,
2

cos sin cos ,

cos sin
2

sin cos

y

y
ly

p

ly
y p

y
ly

p

B A

R y
B B A p

l le B B A
p p

y l le B B
p p

l le B B A
p p

ψ

ψ
ω π

π π ψ

π π
ω π

π π

−

∆
−

∆
−

−

∆
−

∆ = +

∆− ⋅
= − + − ⋅ ⋅

    ⋅ ⋅
−∆ = + +    

    

∆  −    ⋅ ⋅
= − ⋅ + +    

    

    ⋅ ⋅
+ − + −    

    





( )sin .p ψ⋅ ⋅

  (48)         
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From the system (48), the following is obtained:   

( )1 cosB A ψ= ∆ − , 2 1 2B B d f= ⋅ −    

2

2

cos

sin

ly
p le

p
d

l
p

π

π

∆
 ⋅

−  
 =

 ⋅
 
 

,  
22

sin

ly
pef
l

p
π

∆

∆ ⋅
=

 ⋅
 
   

 

( )
2

2 2

1 sin

2cos

l ly y
p p

lR
p

D
l e e

p

π

π
∆ ∆

−

 ⋅
− ⋅  

 =

 ⋅
− − 

   

 

2

2
2

cos sin
21

sin

ly
yp l le

p pRS
p D l

p

π π
π

π

∆ 
∆   ⋅ ⋅ − −    

    = +
  ⋅

  
  

 

 (49)  

 
( )

2

2

2
2

2

cos
22

sin 1 sin

ly
ply

p

le
p

DeE
pl lp R

p p

π

π π

∆

∆

 
 ⋅ −   
  ⋅  =− − ⋅

   ⋅ ⋅
⋅ − ⋅   

     

   

 
( )

2 cos sin
2

1 sin

ly
yp l le

p p
H

lR
p

π π
π

π

∆
∆   ⋅ ⋅

− +   
   =

 ⋅
−  

 

   

( ) 2 2sin
y

yD S E
А

ψ
ω

− ∆
= ⋅ ⋅ +  ⋅∆ 


,  

( ) 2 2cos 1 2
y

y
D D H

А
ψ

ω
− ∆

= − ⋅ + ⋅ ⋅  ⋅∆ 



 
    

After several transformations in (49), the velocity 
equation becomes: 

( )

( ) ( )
( )

2
2 2 2 2

2
2 2

222 2 2 2 2 2
2 2 2 2 2 2 2 22

2
2 2

2 2 2

2 1

2 2 2 4 1 1 2 4

2 1

y

y

D D S E HDy
D S

AD D S E HD D S HD D H E

D S

ω

ω

−
− +

= ⋅ ⋅ ∆ ±
+

 
 − + − − + − + + + ∆ ± ⋅ ⋅ ∆

⋅ +



  (50) 

The velocity equation (50) is much more complex 
than the velocity equation (44). Therefore, the research 
is more complicated when l is even (l = 2,4,…). 

In order to estimate when the velocity is positive, the 
sign of D2 is analyzed first in (49). If the numerator and 
the denominator have the same signs, D2 is always 
positive. 

Firstly, is analyzed the numerator in the equation for 
D2, where the value (R – 1) is always negative, because 
R < 1. Sine function in the numerator is positive for p > 
l, and negative when p < l. 

The graph of the denominator of the expression D2, 

given by function 2 22( ) 2cos ,

l ly y
p plf p e e

p
π

∆ ∆
− ⋅

= − − 
 

 

is shown in Figure 9. The graph was constructed for l = 
2 and Δy = 0.2π. The graph is negative for the whole 
interval  [0, ]p∈ ∞ , and shows that the denominator is 
negative. In the end, it can be concluded that the sign 
for D2 is determined only by the sinusoidal function of 
the numerator. 

 
Figure 9. Graph of the function f2(p)  

The analysis of equation (50) determines the regions 
where the VI modes exist. First, it is necessary to find 
the region where the velocity y− values are real. This is 
achieved by ensuring that the term under the square root 
in (50) is positive. Thus, the first condition defining the 
area where real velocity y− values are located is given 
by: 

( )
( )( ) ( )

2 2
2 2

2 22 2 2 2 2 22 2 2 2 2 2 2 2

4 1

4 1 1 2 4 2 2 2

D S

A D S D H D H E D D S E HD

+∆
≤

+ + + + − − + −
  (51) 

To find the regions of the VI, the second condition, 
saying that the velocity (50) is greater than zero, is 
introduced: 

0y− >                  (52) 

The regions where VI exists are determined from the 
velocity equation (50) by testing when the condition 
(52) is met. After several transformations, equations 
(53) and (54) are obtained as follows. 

2 2 2
2 2

1

1 2 4A D H D H E

∆
≥

+ + +
       (53) 

Equation (53) represents the area of existence of VI 
for p > l. 

2 2 2
2 2

1

1 2 4A D H D H E

∆
<

+ + +
        (54) 

Equation (54) represents the area of existence of VI 
for p < l.  

Figures 10 and 11 display the regions of existence of 
the VI modes I and II. The graphs are constructed 
following equations (53) and (54), where R = 0.7 and Δy 
= 0.2π, for l = 2 (Figure 10) and l = 4 (Figure 11). The 
solid line represents equation (53), while the dashed one 
represents equation (54).   
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Figure 10. Regions where the VI modesexist for l=2 

 
Figure 11. Regions where the VI modes exist for l=4 

Mode I                 
This mode of oscillator movement corresponds to 

the plus sign before the square root in the equation for 
velocity (50). Then, the conditions A∆ <  and (52) are 
satisfied, and the system oscillates with an impact. 
Mode II 

This mode of oscillator movement corresponds to 
the minus sign before the square root in the equation for 
velocity (50). Then, the condition A∆ <  and (52) are 
met, and the system oscillates with an impact. 

 
Figure 12. Areas of existence of the VI modes for l=2 and 
l=4 

Figure 12 shows two graphs obtained for l=2and l=4 
in the interval (0,50)p∈ , where it can be seen that Δ < 
A. This means that, when l is even (l = 2,4,…),there are 
VI modes when Δ < A, as well as there are no VI modes 
when Δ > A. 

4. ANALYSIS OF THE OBTAINED RESULTS  
 
In this study, the VI oscillator from Figure 4 in Section 
3 was analyzed. The results were obtained when l is odd 
and whenl is even. 

In Subsection 3.1, conditions (regions) where the 
periodic VI modes exist for definedodd values of 
parameterl. The calculation gives the equation for 
velocity (44), from where the regions whereVI modes 
exist are determined. First, the regions where the 
velocity values are real are determined by assuming that 
the term under the square root in equation (44) is 
positive. This leads to the first condition given in 
equation (45).According to condition (45), VI modes 
can exist within the region where the stops are 
positioned within the oscillation amplitude limits of the 
VI oscillator, specifically for 0 A< ∆ <  (modes II and 
III). Additionally, they can exist outside this region for 

A∆ >  (mode I), where oscillations occur without 
impacts on the stop. 

To identify the regions where VI modes exist, a 
second condition is introduced, stating that the velocity 
must be greater than zero, as given in equation (47). The 
areas of VI existence are determined by analyzing the 
velocity equation (44) to see when this condition (47) is 
satisfied. The results are illustrated in Figures 6 and 7, 
which display the regions corresponding to VI modes I, 
II, and III.The graphs are constructed by equation 
(45),where R = 0.7 and Δy = 0.2π, when l = 1 and l = 3. 
The figures demonstrate that as the multiplicity l inc–
reases, the regions where the modes exist also expand. 

Diagrams presented in the first part of the paper, i.e. 
subsection 3.1., are similar to results obtained by 
Babicki [1] for odd values of the mode multiplicity l, 
which shows that computation is correct and it presents 
validation of the results of this paper. 

In Subsection 3.2 are established the conditions (or 
regions) where the periodic VI modes exist for even 
values of l, specifically l = 2, 4, …. The velocity 
equation (50) is derived to identify these regions, and 
this equation is significantly more complex than the 
previous velocity equation (44), making the analysis 
more challenging when l is even. 

Initially, the areas corresponding to real velocity 
values are determined by assuming the term under the 
square root in equation (50) is positive, which leads to 
the first condition described in equation (51). To further 
pinpoint the regions where VI modes exist, a second 
condition is introduced, stating that the velocity must be 
greater than zero, as given in equation (52). The regions 
of VI mode existence are then derived from the velocity 
equation (50) by checking when condition (52) holds. 
After a series of transformations applied to equation 
(50), the final expressions are given in equations (53) 
and (54). The results are illustrated in Figures 10 and 
11, which depict the regions where VI modes I and II 
exist.The graphs are constructed by (53) and (54), 
where 0.7R =  and Δy = 0.2π, when  l = 2 (Figure 10) 
and l = 4 (Figure 11).  

Based on the obtained results, it is evident that the 
modes for odd l differ from those for even l. The 
calculation shows that when l is odd then there are VI 
modes when A∆ < , and vibration without impact mode 
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can also exist when Δ > A (Figures 6 and 7). When l is 
even there are VI modes when Δ < A, and they do not 
exist when A∆ > . This is shown in Figure 12 where 
both graphs are presented, one for l = 2 and another for l 
= 4 in the interval (0,50)p∈ , where it can be seen that 
Δ < A. 

These results, illustrated in Figures 6, 7, 10, and 11, 
enable the determination of the frequency interval for 
the realization of the VI process when the distance value 
is specified. 

In Figure 8, a phase portrait of a VI oscillator is 
depicted for one period T, illustrating the behavior for 
two different values of the damping decrement, i.e. Δy = 
0.1π and Δy = 0.2π. Figure 8 shows that when there is 
less damping, the range of oscillations is wider.  

 
5. CONCLUSION          

 
This paper has presented a study of the horizontal 
rectilinear motion of a single-mass VI system with two 
symmetrical stops positioned on either side of the 
oscillator. The VI system, depicted in Figure 4, was 
modeled mathematically. The study focused on the 
periodic motion of the system, where the oscillator's 
motion period T = 2π/Ω is divided into two equal half-
periods, T1 = T2 = π/Ω. Impacts alternated between the 
right and left stops, occurring at constant intervals 
proportional to the half-period of the excitation force, 
·l/Ω, where l represents the mode multiplicity. 

The research findings, which outline the conditions 
(or regions) wherethe periodic VI modes exist and 
ensure the system's stability, are illustrated in Figure 4. 
These results made it possible to determine the 
frequency interval for the VI process when the distance 
value ∆  is known(Figures 10 and 11). 

This paper presents findings for a specified form and 
structure of a VI system, comprising a single mass, 
single spring, single damper, and two stops, 
representing a single-degree-of-freedom VI system. 
These results offer insights that may assist in analyzing 
VI systems with varying structures, such as systems 
with multiple degrees of freedom, different types of 
external excitation forces, and more. 

By analyzing the dynamic model of the VI system, it 
was examined what kind of relations between the 
parameters of the oscillator and the parameters of the 
coercive force can establish such periodic movements, 
in which the period of the impact of the oscillator on the 
limiter is equal to or in proportion to the period of the 
external force. This possibility of multiple regimes is a 
characteristic of VI systems, and therefore the research 
into the dynamics of VI systems in this paper includes 
the definition of all theoretically possible movements, as 
well as the analysis of the stability of the movement, 
and this allows to single out the regimes that can exist in 
practice. 
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NOMENCLATURE 

Fe  elastic force of a spring (N) 
cy  spring stiffness (N/m) 
Fw  viscous damping force (N) 
by  damping coefficient (Ns/m) 
m  mass (kg) 
y  displacement coordinate (m) 
y   velocity (m/s) 
y    acceleration (m/s2) 

Δ  fixed distance (m) 
F,Fi  external periodic excitation force (N) 
t  time (s) 
T  period of oscillator movement (s) 
Ω  external excitation frequency (s-1) 
Ω1  damped circular frequency (s-1) 
φ  initial phase of the external force (rad) 
n  viscous damping coefficient (Ns/m2) 
ωy  angular frequency of free vibration (s-1) 
P  normalized external force (N/kg) 
yh  homogenous part of differential eq. solution 
yp  particular part of differential equation solution 
B1,B2 integration constants of homogenous solution 
D,δ  constants 
Mi,Ni integration constants of particular solution 
Ki  constant 
Yi  static elongation of the spring under the action 

of force Fi (m) 
p dimensionless frequency  
Δy damping decrement 
R  restitution coefficient  
y−   oscillator’s velocity just before an impact (m/s) 
y+   oscillator’s velocity just after an impact (m/s) 

T1,T2 half periods of motion (s) 
l  multiplicity of mode 
A  vibration amplitude due to excitation force 

F1(m) 

ψ  vibration phase due to excitation force F1 (rad) 

Acronyms 

VI  vibro-impact 
SDOF single-degree-of-freedom  
MEMS  micro-electro-mechanical systems 
AFM atomic force microscopy 

 
 

ВИБРОУДАРНИ РЕЖИМИ ПРИГУШЕНОГ 
ЈЕДНОМАСНОГ СИСТЕМА СА ДВА ФИКСНА 

ГРАНИЧНИКА 
 

Љ. Гарић, Н. Нешић 
 

Ова студија испитује понашање виброударног 
система са периодичним кретањем, на који дејствује 
спољашна принудна сила, а који садржи масу, 
опругу и амортизер, чије је праволинијско кретање 
ограничено са два симетрична граничника. 
Периодична спољашња принудна сила покреће 
систем, при чему је период кретања осцилатора 
једнак или је у сразмери са периодом спољашње 
принудне силе. Диференцијална једначина кретања 
са граничним условима, решава се аналитички и 
разматрају се решења. Студија анализира различите 
режиме понашања и укључује анализу стабилности. 
Резултати истраживања приказују одређивање 
услова (области) у којима постоје периодични 
виброударни режими за парне и непарне вредности 
вишеструкости режима. Поред тога, резултати 
омогућавају да се одреди фреквентни интервал за 
виброударни процес када је познато растојање 
између фиксних граничника. Истраживањем 
динамике виброударног система у овом раду 
добијени су резултати који омогућавају да се 
дефинишу теоретски све могуће врсте кретања, као 
и резултати који дефинишу области стабилности 
кретања, а то омогућава да се издвоје режими који 
могу да постоје у пракси. Резултати који су добијени 
у овом раду могу се применити за усавршавање 
постојећих и развој нових виброударних алата и 
машина. 
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