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Correlation of Material Properties and 
Machine Learning Techniques on a      
TIG Cladded SS 316L Base Alloy with 
SS 304 Filler 
 
Tungsten Inert Gas (TIG) cladding is the most promising and feasible 
technique adopted for the weldability of stainless-steel alloys. In this work, 
SS 304 fillers were deposited over the SS 316L through the TIG cladding 
process, and the alloy behavior was studied. The optical study, tensile, and 
microhardness values of TIG-cladded SS 316L base metal with the SS 304 
filler material correlate with the machine learning technique. The Adaptive 
Neuro-Fuzzy Inference Systems (ANFIS) model is utilized in this study to 
predict the values theoretically. The correlation between the experimental 
values and theoretical values is shown to be in good agreement. The 
enhancement in the mechanical properties of TIG-cladded SS 316L alloy is 
found to be sounder and more reliable than that of the SS 316L base alloy. 
The suitable selection of process parameters and the type of cladding 
(single or double pass) had a significant effect on the improvement of 
material properties to a greater extent. From the experimental results, the 
increase in the tensile and microhardness values was found to be 13.2 % 
and     42.5 %. However, a wide range of methodologies/techniques are 
available for the theoretical prediction of values, whereas the machine 
learning technique had a significant effect on the reliable prediction of 
values. Therefore, it is found that the adoption of machine learning 
techniques can help flexibly for the identification of a reliable and optimal 
process parameter in a fabrication process. 
 
Keywords: TIG cladding, SS 316L, SS 304 Filler, Material Properties, 
Machine Learning Technique, and Optimal process parameter prediction. 

 
 

1. INTRODUCTION  
 

Austenitic stainless steels, especially 300 series, contain 
sufficient chromium and nickel to maintain the austenite 
phase in the room-temperature atmosphere. Due to the 
chromium content, the corrosion resistance is at a higher 
level, and they are widely used in industries such as heat 
exchangers, furnaces, turbines, and vessels [1]. It is 
reported [2-4] that austenitic stainless steels are prone to 
high thermal expansion and reduced thermal conduc–
tivity. Thus, these characteristics of austenitic stainless 
steel create huge challenges during the solidification 
process. The austenitic stainless steel is subject to hot 
cracking during welding due to the absence of ferrite 
contents [5]. Another major complexity with austenitic 
stainless steel is solidification cracking, and necessary 
care must be taken to prevent this defect. The AISI 300 
series solidifies in the welding process as a mixture of 
austenite and ferrite. Few research works have been 
reported on the cladding of a substrate over austenite 
stainless steel alloys for better corrosion resistance      
[6-8]. Limited research work was reported towards the 
enhancement of material properties with the assistance 

of the cladding process. It has been reported that the 
process parameters play a vital role in the weldment's 
material properties [9-13]. Thus, it is necessary to have 
control over the process parameters to get a reliable 
sound bonding of the material. In this scenario, machine 
learning plays a major role in determining the optimal 
parameters. It helps define reliable process parameters 
more easily than other conventional methods. A variety 
of non-linear methods are being adopted, such as the 
Taguchi method [14–17], response surface method [18–
22], artificial neural network (ANN) [23–26], genetic 
algorithm [27], and the particle swarm optimization 
techniques [28–30] have been predominantly used to 
represent the relationship between the process parameter 
and the respective outputs from the weldments. Few 
research works have been reported on quality 
evaluation, distortion control, and mechanical property 
investigations [31-33]. It is found that the major part has 
been contributed by the process parameter and the 
process chosen for bonding. However, appropriate 
optimization techniques can be adopted for reliable and 
sound joints between the alloys. 

The existing conventional methods for process para–
meter optimization (Taguchi approach, Grey relational 
analysis, etc.) require time to determine the values thr–
ough mathematical calculations. In contrast, in machine 
learning techniques, the procured time is less, and we 
can also relate the fabrication process with multiple 
process parameters, which is practically very tedious 
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with conventional methods. The machine learning 
techniques are also very flexible in case we need to 
change the process parameters, and we can identify the 
optimal process parameter for the same. Thus, the 
flexibility that exists in machine learning techniques is 
inevitable, which makes it superior for the employment 
of a system for the efficient prediction of values and 
reliable process parameters. Among the conventional 
methods, machine learning techniques have a significant 
effect in defining the optimal process parameters. The 
major objective of this work is to relate the material 
property with the machine learning technique. This 
approach is inevitable in mass production systems 
where we can predict the reliable process parameter or 
the working range of parameters in a process. This 
methodology considerably reduces the time factor 
needed to identify a reliable and feasible range of 
process parameters efficiently. The flexibility of adop–
ting the machine learning technique in a manufacturing 
process will be an added advantage for the production 
engineer, which will help reduce the time factor to a 
greater level when compared with other traditional 
methodologies. The core application of employing 
machine learning techniques is to enhance the efficiency 
in a mass production system where the process para–
meters utilized are in higher numbers. However, no 
evident work has been performed on the material 
property of a TIG-cladded SS 316L alloy with the SS 
304 filler and machine learning technique. Therefore, in 
this study, we have correlated the effectiveness of adop–
ting machine learning techniques to identify the optimal 
process parameters concerning the material properties of 
the cladded alloy. It is revealed that the predicted values 
of tensile, microhardness, and optical analysis of the 
samples are found to be in line with the experimental 
data. Thus, machine learning techniques can be 
significantly utilized for the theoretical prediction of 
values and to determine the optimal process parameters.  

 
2. ARTIFICIAL NEURAL NETWORK (ANN) 

 
Artificial Neural Network (ANN) is a decision tree 
model-like structure that uses different input parameters 
to get the required output as per the requirement or 
application. It carries a three-layer structure in general. 
However, the layers are to be categorized based on the 
problem we have in the system. The ANN serves as a 
simplified model of the Biological Neural Network 
(BNN). It processes interconnected signals from a sys–
tem that includes high-speed signal transportation, 
information storage, perception, automatic training, and 
modeling. In the ANN, inputs (X) are assigned weight 
percentages (W) and summed in a summation unit, 
represented as [(X1 x W1) + … + (Xn x Wn)]. These 
signals then proceed to a threshold unit, or transfer 
function (Φ), which determines whether the signals 
exceed a certain threshold. If they do, they are passed to 
the output; otherwise, they are discarded. Common 
types of transfer functions in ANNs include hard-limit, 
linear, and sigmoid functions. The ANN architecture 
comprises three layers: an input layer for initial 
parameters, a hidden layer for processing, and an output 
layer for results. ANNs offer superior mapping capa–

bilities compared to traditional methods, making them 
ideal for complex mathematical modeling. The first 
ANN model was implemented in the GTAW process 
[34].  

 
Figure 1. Schematic representation of ANN with two input 
variables 

An enhanced ANN and neural network model were 
developed for predicting and selecting various welding 
processes [35-38]. Different algorithms can be emp–
loyed with the ANN based on specific applications, with 
popular options including back-propagation, counter-
propagation, and genetic algorithms. These algorithms 
are widely used in ANN models due to their superior 
performance compared to others. It is important to note 
that the material joining process is significantly influen–
ced by process parameters, regardless of the type of 
welding method used. Figure 1 shows the schematic 
view of the ANN model with a three-layer structure.  
 
3. ADAPTIVE NEURO-FUZZY INFERENCE SYSTEM 

(ANFIS) 
 

The ANFIS model carries a different layer of structures 
in its system. However, the number of layers in the 
ANFIS model can be varied or modified based on the 
requirement. Meanwhile, it is always advised to have a 
wide number of layers and more parameters during the 
model development. A larger number of process para–
meters is always likely to provide a better accuracy va–
lue with the least error percentage in the model. Takagi 
and Sugeno's approach, known as ANFIS, was deve–
loped in early 1993 and has since gained widespread 
application due to its efficiency and accuracy compared 
to other neural network models. In the ANFIS frame–
work, inputs are typically treated as a linear distribution, 
although non-linear distributions can also enhance 
accuracy. The outputs are functions of these inputs, 
which are represented by membership distribution 
functions characterized by three linguistic terms. During 
model training, varying the parameters \(d1\) and \(d2\) 
(representing the length of the distribution function) 
helps achieve modified distributions for the inputs. The 
ANFIS model comprises six layers: Layer 1 (Inputs), 
Layer 2 (Fuzzification), Layer 3 (Firing Strength 
Values), Layer 4 (Normalized Firing Strength Values), 
Layer 5 (Outputs calculated as the product of norma–
lized firing strength values), and Layer 6 (Overall Out–
put). Each layer plays a crucial role in training and 
model development. As depicted in Figure 2, the archi–
tecture includes notations for circles and squares, where 
the squared variables indicate the potential for further 



FME Transactions VOL. 53, No 1, 2025 ▪ 115 
 

optimization to enhance accuracy. This optimization can 
involve error minimization algorithms using input 
variable coefficients (\(ai\), \(bi\), and \(ci\)). When a 
Genetic Algorithm is employed for this purpose, it is 
referred to as the ANFIS model. Overall, ANFIS offers 
a robust solution for theoretical value predictions. 

 
Figure 2. ANFIS Architecture 
 

4. EXPERIMENTAL DETAILS 
 

SS 316L (5 mm) plate dimensions used in this research 
can be observed in Figure 3 and SS 304 filler wire of 
around 1.8 mm diameter. The SS 316L and SS 304 filler 
were procured from Bishweshwar Steels, India. The 
respective chemical compositions are listed in Table 1. 
Among the several grades of austenitic stainless steel, 
SS 316L and SS 304 were obtained for this study to 
investigate the material's behavior throughout the 
cladding process.  
Table 1: SS 316L and SS 304 chemical composition in 
weight (%) 

Elements SS316L SS304 
Wt% 

C 0.03 0.04 
Si 1 0.44 

Mn 2 1.4 
P 0.045 0.03 
S 0.016 0.02 
Cr 17.4 17.8 
Ni 12.6 9.4 
N 0.14 0.1 

Mo 2.14  - 
Fe Balance Balance 

 
The procured samples were properly wire brushed, 

and ethanol was utilized to remove dirt from the alloy 
surface. The fabricated samples are properly polished 
with emery-grade sheets and etched for the optical 
study. The samples for the optical, microhardness, and 
tensile tests are fabricated through the wire-cut EDM 
process for a better surface finish. Meanwhile, the wire-
cut EDM process doesn't affect the base material 
properties due to their less heat generation during the 
cutting process than other conventional fabrication 
processes. The tensile samples are fabricated as per the 
ASTM standard (E8M-04). Figures 4 and 5 depict the 
representation of the sample for the optical, micro–
hardness, and tensile tests. Figure 6 denotes the sche–
matic representation of the tensile specimen ASTM 
standard. The process parameters used in this study are 

listed in Table 2. For the theoretical prediction of 
mechanical properties (ANFIS), an approach is adopted, 
and the same is correlated with the experimental values. 

 
Figure 3: Schematic representation of plate 

 
Figure 4: Optical and Microhardness sample [42] 

 
Figure 5: Tensile sample [42] 

 
Figure 6: ASTM E8M-04 

Table 2: Process parameters 

S. No Current 
[amp] 

Flow 
rate 

[lpm] 

Travel 
Speed 

(mm/sec) 

Number of 
Passes 

Sample 1 80 0.5 2 Single Pass 
Sample 2 90 1.0 4 Single Pass 
Sample 3 100 1.5 6 Single Pass 
Sample 4 110 2.0 8 Single Pass 
Sample 5 120 2.5 10 Single Pass 
Sample 6 80 0.5 2 Double Pass 
Sample 7 90 1.0 4 Double Pass 
Sample 8 100 1.5 6 Double Pass 
Sample 9 110 2.0 8 Double Pass 
Sample 10 120 2.5 10 Double Pass 

 
5. MATERIAL CHARACTERIZATION AND MECHA–

NICAL PROPERTIES 
 
The optical analysis is carried out for the cladded 
samples across the cross-section. The different regions 
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of the cladded samples were identified in the analysis 
(clad region, base alloy, zone separation). Figures 7 and 
8 depict the optical and SEM images for sample number 
6; among the wide number of trials performed, we have 
critically taken sample number 6 for the correlation of 
the metallurgical and mechanical properties. Sample 6 
was chosen for the discussion based on the enhanced 
metallurgical properties and superior mechanical pro–
perties compared with the other trials performed in this 
study. From the optical study, it is revealed that the pre–
sence of ferrite contents in the clad zone is due to the 
deposition of the SS 304 filler wire. The transformation 
of the austenite to ferrite is due to the temperature factor 
involved in the process. However, the transformation of 
this property in the stainless steel determines the metal–
lurgical property of the alloy in a process. Meanwhile, 
the transformation of this phase can happen naturally, or 
it can also be performed by adopting rapid cooling of 
the temperature after the fabrication process. However, 
the rapid cooling of the alloy will also have a subtle 
effect on the material property, such that a rapid cooling 
process can be followed based on the need and requi–
rement of a problem.  

The conversion of the austenite (γ) to ferrite (δ) or 
the combination of both in the material can happen in 
the base alloy is purely dependent on the temperature 
variations that occur during or after the process. The 
transformation of the (γ to δ) is evident from the 
micrograph with the primary solidification of the (γ) as 
reported [39]. The phase transformation is due to the 
thermal dissipation in the process, and it can be 
controlled by adopting reliable process parameters. It is 
reported [40] that the variation of phases primarily 
influences the changes in the material property due to 
the heat generated in the process.   

As our base substrate is SS 316L which is being de–
posited or cladded with the SS 304 filler. Sample 6 
proved to have a refined grain structure due to the utili–
zation of reliable process parameters and adoption of the 
double pass cladding which helped in depositing a 
reasonable quantity of SS 304 filler over the base alloy. 
Table 3: Experimental tensile test values 

S. No Current 
[A] 

Flow Rate 
[LPM] 

Travel Speed 
(mm/sec) UTS (MPa) 

Sample 1 80 0.5 2 495.8 
Sample 2 90 0.5 4 544.16 
Sample 3 100 1.0 6 527.37 
Sample 4 110 1.5 8 477.58 
Sample 5 120 2.0 10 479.41 
Sample 6 80 0.5 2 582.5 
Sample 7 90 0.5 4 577.15 
Sample 8 100 1.0 6 551.25 
Sample 9 110 1.5 8 505.67 

Sample 10 120 2.0 10 576.74 
 

It is always evident that (δ – Fe) content and 
improved grain boundary structures will always have a 
good impact on the other mechanical properties. In this 
study, we have considered tensile and microhardness as 
properties related to metallurgical properties due to the 
fact that these two properties predominantly define the 
strength of the alloys. The observed tensile and 

microhardness values for the process parameters are 
listed in Tables 3 and 4. The base alloy without cladding 
has an ultimate tensile value of ≈ 520 MPa and 
microhardness of ≈ 160 Hv. The cladded base alloy SS 
316L with the SS 304 filler has shown improved tensile 
and microhardness values. The improved efficiency was 
observed in a 13.2 % increase for the tensile and a     
42.5 % increase in the microhardness [42]. Further, the 
enhanced mechanical properties align with the alloy's 
metallurgical behavior; in addition, the process para–
meters also play a major role in deciding the material 
properties. It is reported that the pure solidification of 
SS 304 filler over the base substrate has significantly 
improved the grain structures and enhanced the mec–
hanical properties to a greater extent [42].  

 

 

 
Figure 7: Sample 6 - Optical micrograph, (A) – Base alloy, 
(B) – Fusion zone between base alloy and filler, (C) – Filler 
region [42] 
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Figure 8: Sample 6 SEM micrograph [42] 

Table 4: Experimental microhardness values 

S. No Current 
[A] 

Flow Rate 
[LPM] 

Travel 
Speed 

(mm/sec) 

Microhardness 
(Hv) 

Sample 1 80 0.5 2 207.2 
Sample 2 90 0.5 4 216.3 
Sample 3 100 1.0 6 203.3 
Sample 4 110 1.5 8 200.8 
Sample 5 120 2.0 10 189.6 
Sample 6 80 0.5 2 220.5 
Sample 7 90 0.5 4 204.6 
Sample 8 100 1.0 6 209.4 
Sample 9 110 1.5 8 214.1 
Sample 10 120 2.0 10 210.8 

 
6. ANFIS MODELLING AND VALIDATION 

 
6.1 Input variable for ANFIS model development 

 
This study utilizes three input variables for the ANFIS 
model: current, gas flow rate, and travel speed, with the 
relevant process parameters listed in Table 2. Tables 3 
and 4 indicate results obtained from the current study. 
Results demonstrate that double-pass cladding with 
minimal current, gas flow rate, and travel speed yields 
superior properties due to improved filler deposition 
with the base alloy when compared with the other pro–
cess parameters. However, correlating process parame–
ters with material properties is often complex using 
traditional methods, highlighting the advantages of ado–
pting the statistical learning model (ANFIS). ANFIS is 
particularly effective for developing predictive values. 
 
6.2 ANFIS model for predicting the theoretical 

values 
 
The ANFIS model was developed using samples fabri–
cated according to the process parameters outlined in 
Table 3, with the goal of determining the tensile stren–
gth and microhardness values theoretically. This effec–
tive methodology excels in providing theoretical predic–
tions for properties such as tensile strength and hard–
ness. However, it can also be used to make various 
predictions of material properties as per the requi–
rement. While ANFIS is part of the artificial neural net–
works (ANN) family, it offers flexible techniques for 
model development. Figure 9 and 10 depicts the ANFIS 

model schematic for samples with varying process 
parameters. Tables 5 and 6 show the RMSE and MAPE 
values for different membership functions, indicating 
that Gaussian functions yield the lowest error rates. 
Tables 7 and 8 list the experimental results along with 
the predicted tensile strength and microhardness values. 
For the purpose of the study, two decimals were consi–
dered for comparison with the experimental values for 
the predicted tensile and microhardness values. Due to 
the limited sample size, additional process parameters 
were assumed to improve validation and error measu-
rement. For the ANFIS model development, the assu–
med process parameter conditions for the tensile and 
microhardness are listed in Tables 9 and 10. It is to be 
noted that the ANFIS model should be developed and 
tested for a large set of process parameters for better 
accuracy and improved efficiency in running the model. 
The data reveal minimal discrepancies between experi–
mental results and predicted values for both cladding 
processes, affirming the ANFIS model's suitability for 
predicting tensile strength and microhardness. Each 
model generated 45 pairs of actual experimental outputs 
and ANFIS predictions using the leave-one-out cross-
validation approach. The formula for calculating the 
predicted ANFIS values is provided in equation (1). 

Predicted Anfis TS = evalfis (UTS, Output);      (1) 

In fuzzy set theory, the membership function quan–
tifies the degree of truth, ranging from 0 to 1, facilitating 
the resolution of ambiguous problems. These functions 
are typically depicted as curve-like shapes, each with 
specific names such as trimpf, pimf, gbellmf, gaussmf, 
and gauss2mf. Tables 5 and 6 display the RMSE and 
MAPE (%) values for each membership function evalu–
ated in relation to the UTS plot in this study.  

The membership function with the lowest RMSE and 
MAPE values is deemed the most reliable for ANFIS 
model development, providing predicted UTS values that 
closely align with experimental results. While other 
membership functions also yield predic–tions, their 
substantial variations and errors render them less appli–
cable compared to the actual experimental data.  

 
Figure 9: ANFIS Model Schematic for UTS 

 
Figure 10: ANFIS Model Schematic for Microhardness 
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For each model, multiple pairs of actual experi–
mental outputs and ANFIS-predicted outputs were ge–
nerated using the leave-one-out cross-validation met–
hod. The formula for calculating the predicted ANFIS 
values is provided in equation (2): 

Predicted Anfis Hv = evalfis (Hv, Output);    (2) 

It is reported [41], that the employment of machine 
learning techniques can be an effective tool in a process. 
The present study lies in line with the literature for the 
prediction of values in a process.  
Table 5. RSME Values for Different Membership function 

Number of ‘mf’ Type of 
Membership 

Function 

RMSE 
(MPa) Current 

Gas 
Flow 
Rate 

UTS 

2 2 2 trimf 55.3782 
3 3 3 pimf 48.1246 
3 4 3 pimf 51.3743 
4 4 4 pimf 43.8417 
3 2 3 gbellmf 59.8861 
4 3 4 gaussmf 36.0936 
5 5 5 gauss2mf 50.7295 

 

Table 6. MAPE Values for Different Membership function 

Number of ‘mf’ Type of 
Membership 

Function 
MAPE (%) Current 

Gas 
Flow 
Rate 

UTS 

2 2 2 trimf 18.5428 
3 3 3 pimf 24.7395 
3 4 3 pimf 19.4266 
4 4 4 pimf 18.2892 
3 2 3 gbellmf 16.2977 
4 3 4 gaussmf 12.9598 
5 5 5 gauss2mf 16.0533 

Table 7: Actual process parameters with experimental and 
predicted values 

S. No Current 
[A] 

Flow rate 
[LPM] 

Experimental 
UTS (MPa) 

Predicted 
UTS 

(MPa) 

Error 
percentage 

value  
Sample 1 80 0.5 495.8 496.01 0.21 
Sample 2 90 0.5 544.16 544.08 -0.08 
Sample 3 100 1.0 527.37 527.02 -0.35 
Sample 4 110 1.5 477.58 478.05 0.47 
Sample 5 120 2.0 479.41 480.11 0.7 
Sample 6 80 0.5 582.5 583.07 0.57 
Sample 7 90 0.5 577.15 577.17 0.02 
Sample 8 100 1.0 551.25 551.24 -0.01 
Sample 9 110 1.5 505.67 506.31 0.64 

Sample 10 120 2.0 576.74 577.20 0.46 

Table 8: Actual process parameters with experimental and 
predicted values 

S. No Curren
t [A] 

Flow 
rate 

[LPM] 

Experimental 
Microhardness 

(Hv) 

Predicted 
Microhardness 

(Hv) 

Error 
percentage 
value (%) 

Sample 1 80 0.5 207.2 207.01 -0.19 
Sample 2 90 0.5 216.3 216.09 -0.21 
Sample 3 100 1.0 203.3 203.21 -0.09 
Sample 4 110 1.5 200.8 201.25 0.45 
Sample 5 120 2.0 189.6 190.17 0.57 
Sample 6 80 0.5 220.5 221.01 0.51 
Sample 7 90 0.5 204.6 204.9 0.3 

Sample 8 100 1.0 209.4 210.02 0.62 
Sample 9 110 1.5 214.1 214.15 0.05 
Sample 

10 120 2.0 210.8 211.13 0.33 

Table 9: Assumed process parameters with predicted 
tensile values 

S. No Current [A] Flow rate 
[LPM] 

Predicted UTS 
(MPa) 

1 90 0.7 556.6058 
2 91 0.7 538.4992 
3 92 0.7 462.9103 
4 93 0.7 408.9715 
5 94 0.7 484.4327 
6 95 0.7 484.4762 
7 96 0.7 486.4292 
8 97 0.7 496.5588 
9 98 0.7 517.9842 

10 99 0.7 547.0114 
11 100 0.7 563.2994 
12 101 0.7 570.0724 
13 102 0.7 573.9131 
14 103 0.7 575.6863 
15 104 0.7 576.3288 
16 105 0.7 576.3571 
17 106 0.7 576.1296 
18 107 0.7 575.8839 
19 108 0.7 575.7135 
20 109 0.7 575.6176 
21 110 0.7 576.5694 
22 90 0.9 536.0395 
23 91 0.9 535.1987 
24 92 0.9 535.5223 
25 93 0.9 536.1217 
26 94 0.9 537.0661 
27 95 0.9 538.2068 
28 96 0.9 539.0813 
29 97 0.9 539.1034 
30 98 0.9 537.6964 
31 99 0.9 534.0005 
32 100 0.9 527.2894 
33 101 0.9 511.2076 
34 102 0.9 482.9873 
35 103 0.9 433.8277 
36 104 0.9 458.4889 
37 105 0.9 453.9335 
38 106 0.9 471.8928 
39 107 0.9 502.5827 
40 108 0.9 530.1557 
41 109 0.9 537.568 
42 110 0.9 552.8157 
43 90 1.1 555.7394 
44 91 1.1 543.2126 
45 92 1.1 519.5573 
46 93 1.1 474.9337 
47 94 1.1 441.8669 
48 95 1.1 435.1131 
49 96 1.1 426.8115 
50 97 1.1 467.2421 
51 98 1.1 482.576 
52 99 1.1 538.6816 
53 100 1.1 551.0783 
54 101 1.1 508.3019 
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55 102 1.1 485.9144 
56 103 1.1 435.2287 
57 104 1.1 421.787 
58 105 1.1 431.871 
59 106 1.1 456.5903 
60 107 1.1 488.7415 
61 108 1.1 523.9268 
62 109 1.1 546.4554 
63 110 1.1 558.3694 

Table 10: Assumed process parameters with predicted 
microhardness values 

S. No Current [A] Flow rate 
[LPM] Predicted Hv 

1 90 0.7 251.3297 
2 91 0.7 249.9724 
3 92 0.7 249.4157 
4 93 0.7 248.6065 
5 94 0.7 247.5413 
6 95 0.7 246.3096 
7 96 0.7 245.0842 
8 97 0.7 244.0410 
9 98 0.7 243.2781 

10 99 0.7 242.8075 
11 100 0.7 242.5998 
12 101 0.7 242.6279 
13 102 0.7 242.8845 
14 103 0.7 243.3718 
15 104 0.7 244.0702 
16 105 0.7 244.9046 
17 106 0.7 245.7492 
18 107 0.7 246.4819 
19 108 0.7 247.0394 
20 109 0.7 247.4232 
21 110 0.7 247.6698 
22 90 0.9 248.0838 
23 91 0.9 235.2333 
24 92 0.9 229.4843 
25 93 0.9 190.1938 
26 94 0.9 217.4358 
27 95 0.9 218.8976 
28 96 0.9 208.1097 
29 97 0.9 216.5002 
30 98 0.9 225.4442 
31 99 0.9 236.4606 
32 100 0.9 240.0297 
33 101 0.9 236.4493 
34 102 0.9 225.4196 
35 103 0.9 206.4584 
36 104 0.9 180.0464 
37 105 0.9 198.8089 
38 106 0.9 217.3209 
39 107 0.9 239.0551 
40 108 0.9 248.3265 
41 109 0.9 251.0618 
42 110 0.9 253.9031 
43 90 1.1 262.2697 
44 91 1.1 252.7213 
45 92 1.1 237.8482 
46 93 1.1 216.2323 
47 94 1.1 187.7928 
48 95 1.1 154.9347 
49 96 1.1 177.3083 

50 97 1.1 194.6622 
51 98 1.1 244.6994 
52 99 1.1 232.8646 
53 100 1.1 241.5673 
54 101 1.1 216.3671 
55 102 1.1 191.4174 
56 103 1.1 189.0827 
57 104 1.1 185.8530 
58 105 1.1 183.2197 
59 106 1.1 182.8511 
60 107 1.1 198.5207 
61 108 1.1 228.0400 
62 109 1.1 231.4739 
63 110 1.1 241.0997 

 
7. MATERIAL PROPERTIES AND MACHINE 

LEARNING TECHNIQUE 
 
The major objective of this study is to relate a strong 
relation between the actual material property of a fabri–
cated sample and the machine learning technique, which 
is predominantly used for the theoretical prediction of 
values in a process. The complexity arises in how to 
relate these two different streams. Thus, we have add–
ressed this with a novel approach to comparing the 
actual experimental data that we have procured during 
the process. The experimental data we have adopted in 
this study are metallurgical analysis, tensile, and micro–
hardness values. In order to compare the experimental 
values that we have defined from the trial runs and as 
per the standard testing procedures, we need to have 
theoretical values of the same test methods that we have 
performed in this study. Therefore, as discussed, we 
have developed a model using the ANFIS model, 
considering the input parameters with a certain range of 
assumed process parameters. It is understood that 
machine learning techniques are highly efficient when 
they are tested with a larger number of working 
parameters. This is due to the fact that machine learning 
techniques are majorly working towards the collection 
of data in an application. The higher the data sets we use 
in an application, the more reliable outputs can be 
obtained from the trials we perform. However, it is well 
known that the material behavior of the alloy directly 
has a significant impact on the mechanical properties. It 
is studied from the obtained experimental values of the 
tensile and microhardness, which are directly 
proportional to the metallurgical behavior of the alloy. 
The refined and coarse grains had a significant effect on 
the mechanical properties. However, refined grains are 
achieved by adopting a feasible process parameter and a 
fabrication process that is much more easy and flexible 
to have control over during the cladding process. Thus, 
the actual experimental values and the predicted 
theoretical values, with the assistance of the ANFIS 
model, are in line with the data with the lowest error 
percentage values. Therefore, the ANFIS model can be 
widely used for the easy theoretical prediction of 
mechanical properties, and it can also be adopted for the 
optimal selection of process parameters. However, it is 
worth mentioning that the utilization of these machine-
learning techniques in a process has to be chosen based 
on the requirements and needs of the industry. 
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8. CONCLUSIONS 
 

The following observations are concluded from the 
present work: 

1. Successful single and double pass cladding of 
SS 304 fillers is carried on SS 316 L base alloy. 

2. A metallurgical survey was performed for the 
samples across different zones. 

3. Refined grain structures resulted in enhanced 
material properties. 

4. The increase in the tensile and microhardness 
values is observed as 13.2 % and 42.5 % from the 
experimental outputs.   

5. Double-pass cladding has shown improved 
output compared to single-pass cladding due to better 
filler deposition over the base alloy. 

6. A novel approach has been attempted to relate 
the material properties and machine learning techniques. 

7. The ANFIS model was developed for the trials, 
and the theoretical values were predicted to be the same. 

8. The experimental and theoretical values are 
reliable, with the lowest error percentage. 

9. Machine learning techniques could effectively 
be used to predict optimal process parameters in a 
feasible manner compared with other existing traditional 
techniques.  
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КОРЕЛАЦИЈА СВОЈСТАВА МАТЕРИЈАЛА И 
ТЕХНИКА МАШИНСКОГ УЧЕЊА НА ТИГ 

ОБЛОЖЕНОЈ SS 316L ОСНОВНОЈ ЛЕГУРИ СА 
SS 304 ДОДАТНИМ МАТЕРИЈАЛОМ 
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Облога од волфрама за заваривање са инертним 
заштитним гасом (ТИГ) је најперспективнија и 
најизводљивија техника усвојена за заваривање 
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легура од нерђајућег челика. У овом раду, SS 304 
пунила су нанесена преко SS 316L кроз ТИГ процес 
облагања и проучавано је понашање легуре. 
Оптичке студије, вредности затезања и микро–
тврдоће ТИГ обложеног основног метала од SS 316L 
са SS 304 материјалом за пуњење су у корелацији са 
техником машинског учења. Модел Adaptive Neuro-
Fuzzi Inference Systems (АНФИС) је коришћен у овој 
студији да се теоретски предвиде вредности. 
Показало се да се корелација између експери–
менталних вредности и теоријских вредности добро 
слаже. Утврђено је да је побољшање механичких 
својстава легуре SS 316L обложене ТИГ-ом 
солидније и поузданије него код легуре СС 316L на 

бази. Одговарајући избор параметара процеса и 
врсте облоге (једноструки или двопролазни) 
значајно су утицали на побољшање својстава мате–
ријала у већој мери. Из експерименталних резултата 
утврђено је повећање вредности затезања и микро–
тврдоће за 13,2 % и 42,5 %. Међутим, доступан је 
широк спектар методологија/техника за теоријско 
предвиђање вредности, док је техника машинског 
учења имала значајан утицај на поуздано пред–
виђање вредности. Стога је утврђено да усвајање 
техника машинског учења може помоћи флекси–
билно у идентификацији поузданог и оптималног 
параметра процеса у процесу производње. 

 


