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A Novel Cost-Function for Transformer-
based YOLO Algorithm to Detect 
Photovoltaic Panel Defects 
 
Solar panel defects can lead to substantial efficiency loss and increased 
maintenance expenses. Conventional defect detection methods are often 
slow and ineffective. Thisstudy revisits the You Only Look Once (YOLO) 
algorithm and its variations, assessing their efficacy in identifying defects 
in thermal images of solar panels. Subsequently, we introduce a novel 
YOLO algorithm, termed YOLOS-PV, built uponthe transformer-based 
YOLOS algorithm. The proposed algorithm introduces newloss function 
weights to prioritize localized objects and visualize the attention mapof 
each transformer head within the YOLOS algorithm. In the experiments, 
theYOLOS-PV achieves a mAP@0.5:0.95 score of 0.894, surpassing the 
efficiency ofother YOLO variants. Code implementation can be found here: 
tella26/YOLOS-PV (github.com) 
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1. INTRODUCTION 
 

Rapid population growth and drastically increasing 
power requirements are critical concerns to address the 
energy needs [1,2]. However, traditional power plants 
cannot be built to meet the pace of increasing energy 
demands [3]. Solar power plants consist of numerous 
Solar Panels (SPs) organized in arrays ona supportive 
framework [4]. These panels can be installed on buil–
ding rooftops orfacades to supply electricity to the 
buildings [5]. However, the outdoor arrangementof the 
SPs exposes them topotentially harsh conditions, which 
can adversely affect their performance and lead to 
defects. These defects mayinclude hotspots [6], cracks 
and corrosion [7], broken glass [8], and others, as 
outlined in Table 1. 

Detecting defective solar panels has traditionally 
reliedon experts, who, thoughreliable,can be inefficient 
[9]. Moreover, conventional methods like thermal and 
electricalmodeling [10], which primarily analyze tem–
perature and power output to assess performance, often 
fall short in detecting defects such as cracks orhotspots 
[11]. Optimal utilization of renewable energy systems 
depends on the harmonization of various processes like 
design, manufacturing, materials, technology, policy 
and regulations, standards, and testing [2, 12-15]. To 
overcomethese constraints, a combination of imaging 
techniques, including Electroluminescence (EL), Infra-
Red Thermography (IRT) [16], Lock-in Thermography 
(LIT) [17], Ultraviolet (UV) [18], Magnetic Field Ima–
ging (MFI) [19], and Spectroscopic Diagnostic Techni–

ques (SDT) [20], along with classification techniques 
like Wavelet Transform andFast Fourier Transform 
(FFT) [21], have been proposed. Deep Learning (DL) 
[22] hasemerged as a promising approach for effectively 
identifying defects in solar panels, defect visibility, and 
efficient localization. Our survey of related models 
concerning solar panel defect detection revealed that 
RGB images are not suitable for the visibility of defects 
[23]. This is why nondestructive detection techniques, 
such as IRT, LIT, etc., are applied before the object 
detection process. These techniques ensure enhanced 
facilitating more accurate defect detection and classi–
sfication.  
Table 1. Type of defects in solar modules caused by the 
manufacturer, environmental conditions, and users. 

No Defect Type Causes 
1 Hotspot [6] Extreme Temperature 
2 Broken glass [8] Hail or collisions 

3 Dust Build up Strong wind or dust 
accumulation 

4 Cracked back sheets Collision or other harsh 
environmental conditions 

5 Ribbon Discoloration Corrosion, heat, or moisture 
exposure 

6 Encapsulant 
Discoloration 

UV light exposure, high 
temperature, and humidity 

7 Delamination 
Manufacturing, installation 
issues, Environmental 
conditions, etc. 

8 Bubbles Inadequate heating and 
moisture or contaminants 

9 Defective Junction box 
[24] Faulty connections 

10 Potential Induced 
Degradation (PID) 

Exposure to high temperatures 
and humidity 
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11 Corroded [25] Moisture or humidity and 
extreme temperature 

12 Soiling Accumulation of dirt, dust, or 
other materials 

13 Diode Defects [26] Installation and functioning of 
bypass diodes 

 

 
IRT is a nondestructive imaging technique that 

preserves the integrity of the captured sample image. It 
utilizes infrared radiation to capture and generate an 
image of solar panels to depict their temperature distri–
bution. Figure 1 illustrates examples of solar thermal 
images [27]. 

You Only Look Ones (YOLO) is one of the most 
important object detection algorithms [28]. YOLOv3 is 
applied in [29] to Infra-Red (IR) and RGBdataset 
collected by a drone, and the same model is applied in 
30] to only IR images. The IR images are used for 
hotspot defects, while the RGB images are for other 
defects.YOLOv3 gives mAP@0.5 of 0.70 and a 74% 
confidence level for the hotspot test images. Also, [31] 
proposed a TPH-YOLOv5 model that is based on the 
YOLOv5 by replacing the prediction heads with 
Transformer Prediction Heads (TPH) [32]. However, 
this model is used on drone-based RGB datasets, which 
gives an average precision of about 39%. 

Likewise, a faster Region-based Convolutional 
Neural Network (RCNN) model[33], known as edge 
detection algorithms, was used to localize hotspot 
defects on IR thermal images. This method achieved 
anmAP of 0.67. The YOLOv5 model was used in [34] 
by improving the anchor boxes and prediction heads of 
the algorithm, which is termed AP-YOLOv5. This 
achievedanmAP of 0.87, an average recall of 89.00%, 
and an F1 score of 88.90% on IR thermal images.Our 
work focuses on improving the detection and 
localization of solar panel defects by bridging the gap of 
past works. Specifically, we evaluated the performance 
of six YOLO variants, namely, YOLOv5 and YOLOv5-
OBB [35], YOLOv6 [36], YOLOv7 [37], YOLOv8 
[38], and YOLOS [39], and developed a YOLOS-PV 
based on the transformer YOLOS object detection 
model. The proposed algorithm outperforms the other 
tested YOLO variants. 
Table 2. Summary of surveyed papers. 

Authors Model  Dataset(s) Results 

Tommasoe
t al. [29] YOLOv3 

Infra-red 
imaging by 
Drone 
(Unavailable) 

0.70(mAP@0
.5) 

Tajwar 
et al.[30] YOLOv3 Thermal images 

(Unavailable) 74.00% (Acc) 

Zhu et al. 
[31] 

TPH-
YOLOv5 

VisDrone2021, 
DET-test-
challenge 
(Available) 

DET 39.18% 
(AP) and Vis 
39.43% (AP) 

Pathak  
et al. [33] 

faster 
RCNN 

IR thermal 
Image 
(Unavailable) 

0.67 (mAP) 

Sun et 
al.[34] YOLOv5 

IR thermal 
Image 
(Unavailable) 

87.80%(mAP
), 89.00% 
(AR) 

 
Figure 1. Typical solar panel cell defect detection  
 

2. METHODOLOGY 
 
2.1 Dataset Description 
 
A comprehensive dataset is crucial to developing and 
training effective DL models for SP defect detection. In 
this section, we elaborate on how the dataset was 
collected and preprocessed. While most datasets used in 
the literature for SP defect detection are RGB, we opted 
for solar thermal image datasets in this research. This 
decision stems from the observation that defect 
detection in RGB images often misclassifies functional 
SPs as defective, as depicted in Figure 2. We collected a 
dataset that comprises 1,056 high-resolution 640 × 640 
images captured using a thermal camera across various 
solar panel environments, and a sample is shown in 
Figure 1. Each image is annotated with binding boxes 
and defect class labels following the Common Objects 
in Context (COCO) dataset format. These solar thermal 
images were gathered from companies that made 
datasets publicly available, such as Nanonets[40] and 
Roboflow[41]. Additionally, we have used samples 
from a local solar plant in SAKAKA, Saudi Arabia. 

 
Figure 2. RGB image of solar panels and falsely detected 
Defects. 

2.2 Defect Localization using YOLO Models 
 
We experimented with variants of YOLO algorithms, 
including YOLOv5, YOLOv5-OBB, YOLOv6, YOLOv7, 
YOLOv8, and YOLOS. We found that YOLOS performed 
better than the other variants. YOLOS is an object 
detection model based on the vanilla Vision Transformer 
(ViT)[42] with Sequential Positional Encoding (SPE)[43]. 
Unlike previous mo–dels, YOLOS uses a ViT block as its 
backbone. The architecture of YOLOS consists of several 
layers of SPE blocks, followed by a transformer encoder 
block. The SPE blocks encode spatial and sequential 
information about the image features, while the encoder 
helps the model to learn contextual relationships between 
features.  

The process takes a single 640 × 640 thermal image, 
which is converted into 16×16of 40 image patches, 
where time variability is not considered. These sets of 
image patches as tokens and a corresponding set of 
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positional embedding, also referred to as “queries,” are 
then passed as inputs to the transformer block encoder, 
as shown in Figure 3. 

 
Figure 3. A diagram of the YOLOS model on object 
detection for solar images 

The pre-trained ViT model used in YOLOS is 
adapted from the transformer architecture and was 
initially designed for natural language processing and 
visual data processing. It divides an input image into a 
sequence of smaller patches, linearly embeds them, and 
passes them through multiple layers of self-attention 
mechanisms to capture relationships between patches. 
The ViT model used in YOLOS has been pre-trained on 
large datasets such as ImageNet, which consists of over 
14 million images. This pre-training allows it to learn 
general visual features and patterns, making it effective 
for various downstream tasks. The Multilayer Percep–
tron (MLP) heads help to fuse the detection token pro–
duced from the output of the transformer encoder to 
give the defect classification and bounding box predic–
tions [44]. Figure 4. shows the overall system, including 
the pre-trained ViT module. The matching process of 
the objects uses the following global loss function,  

YOLOS loc loc obj obj cls clsλ λ λ= + +L L L L  (1) 

where λloc, λobj, λcls and represent the weights assigned to 
the localization, objectness, and classification loss ter–
ms, respectively. locL  measures the error of the pre–
dicted bounding box locations, objL  measures the error 

of the predicted object, and clsL  measures the error of 
the predicted class label. 

 
Figure 4. The overall detection system with the ViT module. 

The commonly used Intersection over Union (IoU) 
loss is a measure of dissimilarity between two bounding 

boxes. Let Bpred be the predicted bounding box and Bgt 
be the ground truth bounding box. The IoU of Bpred  and 
Bgt is defined as: 

( ) ( )
( )

,
pred gt

pred gt
pred gt

B B
IoU B B

B B

∩
=

∪
 (2) 

where Bpred ∩ Bgt is the overlapped area of these two 
boxes, as exhibited with the shaded rectangle in the left 
panel of Figure 4. Meanwhile, Bpred ∪  Bgt is the union 
of these two bounding boxes, as shown in the right 
panel of Figure 5. However, IoU is zero when no over–
lapping area exists between Bpred and Bgt. See Figure 5 
for example. Therefore, we have modified IoU to a mo–
re general metric Generalized IoU (GIoU) as follows, 

( ) ( )
( )( )
, ,

,

( , )

pred gt pred gt

pred gt pred gt

pred gt

GIou B B IoU B B

en box B B B B

en box B B

= −

− − ∪
−

−

 (3) 

where en – box(Bpred, Bgt) is the smallest bounding box 
enclosing both Bpred and Bgt. The GIoU metric considers 
both overlap and structural differences between the two 
areas as it adds structural similarity to the overlap mea–
surement IoU, as shown in Figure 6. The total GIoU 
loss for all N objects in an image can be expressed as 
follows, 

( )( )1
1 ˆ1 ,N

i iiGIou Loss GIoU b b
N =

⎛ ⎞= −⎜ ⎟
⎝ ⎠

∑  (4) 

Here, bi is the ground truth bounding box for the ith 
object in the image, îb  is the predicted bounding box for 

the object, ( )ˆ,i iGIoU b b is the GIoU between bi and îb . 

 
Figure 5. The overlapping, union, and the en-box of two 
bounding boxes 

 
Figure 6.The overlapping, union, and the en-box of two 
bounding boxes. 

The Detection Transformer (DETR) model is popu–
larly known as End-to-End Object Detection with 
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Transformers [45]. It uses a unique loss function called 
Set Prediction Loss, which aims to solve the object 
detection problem as a set prediction task rather than a 
region proposal problem. The loss function includes two 
terms: Binary Cross-Entropy (BCE) Loss and Set Loss. 
BCE measures the loss for object predictions (whether an 
object is present in a particular class). In contrast, set loss 
measures the matching between predicted and ground-
truth object sets using a bipartite matching process. The 
corresponding equation for the BCE loss is: 

( )( )
( )( ) ( )

ˆ,

1 1
1

ˆ ˆ,

box b bi i

GIoU GIoU i l l ii i

WeightedL

W b b W b b

σ

σ σλ λ

=

⋅ + ⋅ −
 (5) 

where vector y = [y1, y2, …, yN] represents the ground 
truth binary labels (0 or 1) for the N samples, vector 

[ ]1 2ˆ ˆ ˆ ˆ, ,..., Ny y y y= represents the predicted probabilities 
for the positive class, and log(·) is the natural logarithm 
function. The Set Loss is given by: 

( ) ( ) ( )( )
( ) ( )( )

ˆ,

ˆ,box

SetLoss A B BCELoss C A C B

L L A L B

λ= + ⋅
 (6) 

where A is the ground-truth object set, B is the 
predicted object set; C(A) is the binary mask indicating 
the presence or absence of objects, ( )Ĉ B  is the 
predicted mask, L(A) is the ground-truth bounding box 
location matrix, ( )L̂ B  is the predicted matrix, and λ is 

a balancing hyperparameter. L(A) and ( )L̂ B  are matrix 

combinations of bi and ( )b̂ iσ îb , respectively. Lbox is a 
linear combination of GIoU and l1 regression loss 
shown as follows, 

( ) ( )( )
( )1 1

ˆ, ,

ˆ

box i i

L i

L b GIoU b b i

b b i

σ

σ

λ

λ ⋅

= = ⋅ +

+ −
 (7) 

 
where bi denotes the i-th object, and ( )b̂ iσ  denotes the 
prediction with the lowest cost from bi in terms of 
Hungarian algorithm-based matching loss [45]. 

GIoU RΛ ∈ and 1L RΛ ∈ are hyperparameters that cont–
rol the weighting of the GIoU Loss component and the 
l1 regression loss in the overall loss function. The 
authors of DETR suggested λGIoU = 5 and λL1 = 1, [46]. 
Notation  ( )

1
ˆ

ib b iσ−  denotes the l1 norm. The losses 

are normalized by the number of objects in the batch. 
 
l1 loss in YOLOS Models 
 
In YOLOS, the l1 loss is used to measure the difference 
between the predicted bounding box coordinates and the 
ground-truth bounding box coordinates. Suppose we 
have N ground-truth objects in an image; then the 
predicted bounding box coordinates and sizes for each 
of these objects are denoted as (xi, yi, wi, hi), i = 1,2, 

…N, where coordinate (xi,yi) denotes the center of the i-
th box, and the pair (wi, hi) hi represent the width and 
height of the same box, respectively. Similarly, the 
ground-truth bounding box coordinates and sizes are 
denoted as (xi0, yi0, wi0, hi0). The l1 loss for a single 
object i is defined as the sum of the absolute differences 
between the predicted and ground-truth bounding box 
coordinates and sizes: 

( ) 0 0 0 01l i i i i i i i iL i x x y y w w h h= − + − + − + − (8) 

The total l1 loss for all N objects in an image is 
obtained by summing up the loss over all objects. 

( )11 1
N

l liL L i== ∑   (9) 

Weighted GIoU and l1 losses for YOLOS-PV 
 

A linear combination of GIoU and l1 losses in equation 
(7) is inefficient for some problems. This was proposed 
by [46] to solve the problem of different scales for small 
and large boxes, even if their relative errors were 
similar. However, defect localization in the solar panels 
using the YOLOS algorithm with the linear combination 
of losses results in ineffective bounding box predictions 
of the defects during the inference. This sometimes 
results in overlapping of the bounding boxes of different 
class scores on the same object. However, using a 
weighted loss combination ensures assigning more 
priority to any of the GIoU or l1 loss, which helps 
suppress an unwanted bounding box loss.We introduce 
two hyperparameters, i.e., WGioU and Wl1, as the weights 
of GIoU Loss and l1-Loss, respectively, 

1 1GIoU l lFinalWeightLoss W GIoULoss W L= ⋅ + ⋅  (10) 

where the sum of Wl1 and WGioU is always equal to 1. 
Rewriting the equation yields: 

( )( )
( )( ) ( )

ˆ,

1 1
1

ˆ ˆ,

box b bi i

GIoU GIoU i l l ii i

WeightedL

W b b W b b

σ

σ σλ λ

=

⋅ + ⋅ −
 (11) 

 

3. EXPERIMENTAL RESULTS 
 
3.1 Solar Panel Defect Localization Results 

 
Before discussing the results, we will briefly explain the 
performance measures that we have used. In object 
detection, Mean Average Precision (mAP) is used as an 
algorithm performance measure. Precision measures how 
accurate the algorithm's predictions are. i.e., the number of 
correct detections that the system finds (true positive) is 
divided by the total number of detections that the system 
finds (true positive + false positive). Object detection 
systems make predictions in terms of a bounding box of 
the detected object. For each bounding box, we measure an 
overlap (intersection) between the predicted bounding box 
and the ground truth bounding box. This is used by the IoU 
explained above. A threshold value is pre-selected; if the 
IoU exceeds this specified value, it leads to a true object 
being detected. The mAP is calculated by taking the mean 
AP over all IoU thresholds. 
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Another important performance measure is the 
Recall. It measures how well the system finds all 
positives, i.e., the number of correct detections that the 
system finds (true positive) divided by the total number 
of existing true objects (true positive+false negative). 
The Mean Average Recall (mAR) is the recall averaged 
over all IoU thresholds between 0.5 and 1.0. More 
details about the mAP and mAR and their calculations 
can be found in [47,48]. 

We experimented on the six YOLO variants inclu–
ding YOLOv5, YOLOv5-OBB, YOLOv6, YOLOv7, 
YOLOv8 and YOLOS for 100 epochs. The batch size 
is16, the image resolution is 640, the learning rate is 2.5e-
5, and the weight decay is 1e-4. The experimental results 
are displayed in Table 3, where symbol + indi–cates that 
the modelis used on a different dataset. The results show 
the transformer-based YOLOS algorithm has better 
mAP@0.5:0.95 of the value 0.867 and mAR@0.5:0.95 of 
the value 0.952. The metric mAP@0.5 measures the ave–
rage precision when the IoU threshold is set to 0.50, 
while mAP@0.5:0.95 measures the average precision 
when the IoU threshold is varied from 0.50 to 0.95 with a 
step of 0.05. The range specifies that the AP is calculated 
at ten different IoU thresholds, ranging from 0.50 to 0.95. 
A value of 1.0 for mAP@0.5 indicates perfect perfor–
mance, while a 0.0 means the model fails to detect any 
defects. In our case, we got a value of 0.867, which indi–
cates that YOLOS can detect around 86.70% of the def–
ects in the test set correctly out of the ten different IoU 
thresholds. 
Table 3. Experimental results of YOLO variants on object 
detection. 

Models Precision Recall mAR 
@0.5:0.95 

mAP 
@0.5 

mAP 
@0.5:0.95

Tommaso (Yolov3) 
[29]+ - - - 0.700 - 

Zhu (TPH-
YOLOv5) [31]+ - - - - 0.394 

Pathak (faster 
RCNN) [33]+ - - - - 0.670 

Sun (YOLOv5) [34] 
+ - - 0.890  

- 0.878 

YOLOv5 [35] 0.692 0.491 -  
0.511 0.258 

YOLOv5-OBB [35] 0.637 0.371 -  
0.411 0.153 

YOLOv6 [36] - - 0.835 0.483 0.767 
YOLOv7 [37] 0.805 0.769  0.796 0.370 
YOLOv8 [38] 0.715 0.691  0.752 0.463 
YOLOS [39] - - 0.952* 0.335 0.867 

YOLOS-PV (Ours)* - - 0.952* 0.335 0.894* 

 
Figure 7. Inference experimental results on solar thermal 
images using six YOLO variants. 

 

 

 

 
Figure 8. Results of varying the weighted hyperparameters 
of Wl1 AND WGIoU with the l1 and giou loss for the defects 
localization in solar thermal images. a weight of l1 = 0.250 
and giou = 0.750 gives a better loss combination for the 
selected learning rate of 2.5e-5. this gives a final giou loss 
of 0.970, a final weight loss of 1.100 during training, and a 
test loss value of 2.890 within the 10 epochs window from 
50 to 59 epoch. 

(a) 

(b) 

(d) 

(c) 
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Similarly, we evaluate each model on the inference 
dataset as shown in Figure7.The figure shows four rows 
of different input IR images (left) and the results of 
defects detections by the 6 YOLO variants. For each 
algorithm the figure shows the detected objects (in this 
case it is the defects), the bounding box, and the confi–
dence score of the detection. The performance of each 
model is zoomed-in for a better score display. One can 
easily observe that the YOLOS transformer model has 
confidence levels close to 1.0 for most detected defects 
compared to the other variants. Itis concluded that the 
YOLOS model has better inference performance but with 
overlapping bounding box prediction in some cases. 
 
3.2 YOLOS-PV weighted loss results 
 
In this section, we implemented the proposed YOLOS-
PV method on the same dataset used in the previous 
experiment. We vary the values of the weights Wl1 and 
WGIoU from 0 to 1 in steps of 0.25 while both weights 
added to 1. We evaluate our results in a window of 10 
epochs from 50 to 59 epochs. The results, as visualized 
in Figure 8, show that for the problem of localizing 
defects in solar thermal images, the best combination of 
the effective weight is Wl1 = 0.25 and WGIoU = 0.75. 

According to[49], the combination above results in a 
suitable learning rate as compared with other combi–
nations. The most similar combination is Wl1 = 1 and 
WGIoU = 0, which totally shuts down the effect of GIoU 
loss. However, this means that the bounding boxes 
overlap even more and the effect of the GIoU loss is 
removed. Since GIoU loss helps measure the dissimi–
larity between two bounding boxes and consider the 
overlap, we selected the 0.25 and 0.75 weight combi–
nations for the YOLOS-PV model. This configuration is 
then trained on the images with the same hyper–
parameters chosen for the other models. This improves 
the mAP@0.5:0.95 to 0.894 as shown in Table 3. 
 
4. CONCLUSION 
 
In this paper, we introduced the YOLOS-PV model, which 
is based on the transformer YOLOS model. Initially, we 
applied six state-of-the-art YOLO variants, i.e., YOLOv5, 
YOLOv5-OBB, YOLOv6, YOLOv7, YOLOv8, and 
YOLOS, to localize defect class objects on the solar 
panels. Among these models, the YOLOS model demon–
strated superior performance with a mAP@0.5:0.95 score 
of 0.867. To enhance the localization and bounding 
boxprediction accuracy of solar thermal images, we 
proposed YOLOS-PV by introdu–cing hyperparameter 
weighted values to the linear com–bination of bounding 
box loss, comprising l1 regression loss and GIoU loss. This 
approach grants us greater control in adjusting the 
effectiveness of the loss function. Through experimen–
tation, we determined that setting Wl1 = 0.250 and WGIoU 
= 0.750 yielded optimal weight combinations for defect 
localization in solar thermal images. 
 
5. FUTURE DIRECTION 
 
One potential area for improvement is to further study 
the variation of defects in different solar panel plants, 

such as hotspots, diodes, and junctions unlike using one 
class. This would require collaboration with the industry 
to obtain more accurate and comprehensive data, which 
can be used to refine the algorithms and improve the 
detection performance. Another area for improvement is 
the optimization of the weight values of l1 and GIoU 
during training, using optimization techniques such as 
gradient descent. This can potentially lead to better 
localization accuracy and faster convergence during 
training. Finally, an interesting future direction would 
be to apply and fine-tune the weights hyperparameters 
to other domains apart from defect classification of solar 
thermal images, which could include other types of 
imaging modalities or even non-imaging data. This 
would require further research and experimentation to 
determine the applicability and effectiveness of the 
transformer-based YOLOS-PV algorithm in different 
domains. 
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Дефекти соларног панела могу довести до значајног 
губитка ефикасности и повећаних трошкова 
одржавања. Конвенционалне методе откривања 
кварова су често споре и неефикасне. Ова студија 
поново разматра алгоритам You Only Look Once 
(YOLO) и његове варијације, процењујући њихову 
ефикасност у идентификацији недостатака у терм–
ичким сликама соларних панела. Након тога, предс–
тављамо нови YOLO алгоритам, назван YOLOS-PV, 
изграђен на YOLO алгоритму заснованом на 
трансформатору. Предложени алгоритам уводи 
тежине функције нових губитака да би одредио 
приоритет локализованих објеката и визуелизовао 
мапу пажње сваке главе трансформатора у оквиру 
YOLOS алгоритма. У експериментима, YOLOS-PV 
постиже мАП@0.5:0.95 резултат од 0.894, надма–
шујући ефикасност других YOLOS варијанти. Имп–
лементација кода се може наћи овде: tella26/IOLOS-
PV (github.com).  

 
 


