
© Faculty of Mechanical Engineering, Belgrade. All rights reserved FME Transactions (2024) 52, 393-401  393
 

Received: May 2023, Accepted: April  2024 
Correspondence to: Dr Khadija Hmina 
Assistant Professor, Mechanical and integrated 
engineering team M2I ENSM-Meknes, Morocco 
E-mail: khadija.hmina@gmail.com 
doi: 10.5937/fme2403393A 

M. El Amine 
Qualified Professor 

Mechanical and integrated engineering 
team M2I ENSAM-Meknès 

Morocco 
  

K. Hmina 
Assistant professor 

Mechanical and integrated engineering 
team M2I ENSAM-Meknès 

Morocco 
  

M. Sallaou 
Higher Education Professor 

Mechanical and integrated engineering 
team M2I ENSAM-Meknès 

Morocco 

Integration of Behavior Models’ 
Accuracy in Design Decisions Using 
AHP, FMEA and Physical Prototyping 
 
The embodiment design phase consists of rough selections/arrangements of 
materials, technologies used, dimensions, and main components. During 
this phase, many behavior models are used to verify the achievement of 
design objectives. The lack of confidence in these models due to the 
assumptions adopted causes designers to realize many prototypes during 
product development, causing time/cost-consuming loops of the "trial-and-
error" procedure. We propose a decision model that integrates the 
accuracy of behavior models into decision-making. The objective is to limit 
the use of physical prototypes and improve the quality of decision-making. 
Each design alternative is evaluated using two indicators. The first is a 
desirability indicator that measures the level of completion of design 
objectives. The second indicator assesses the risk associated with the 
accuracy of behavior models using AHP, FMEA, and experimental tests on 
a prototype. The proposed approach was applied to the development of a 
solar collector. 
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1. INTRODUCTION 
 

Decision-making is an inherent part of product develop–
ment and occurs throughout the whole development 
process, whether it is to define the operating principles 
of the future product or to choose its geometric 
characteristics. During the preliminary design phase of 
product development, these decisions can influence up 
to 70% of future lifecycle costs [1,2]. The key to pro–
duct development success is leading the development to 
the most appropriate design concepts at the beginning of 
the development project. Appropriate theories, methods, 
and tools must then guide the choices made during the 
preliminary design phase.  

As seen in Fig. 1, the preliminary design is com–
posed of concept research, concept selection, and em–
bodiment design. In the present study, only embodiment 
design is considered. It consists of a rough selection of 
materials, technologies, main components (types, posi–
tioning), and structure dimensions. 

Nowadays, numerical calculation and different be–
havior models are central to the embodiment design 
stage. They allow substituting physical experimentation 
to observe the product's behavior and verify compliance 
with the design requirements [3]. However, because of 
the multitude of assumptions used in these behavior 
models, the accuracy of the provided results and their 
ability to realistically represent the behavior of the 
design solution remains a crucial issue for design engi–
neers. In the absence of adequate methods to measure 
the level of accuracy of the behavior models used, as 

well as the impact of this level of accuracy on the 
reliability of decision-making, design choices are often 
based on professional habits and experience and the 
"know-how" of designers [4]. As a consequence, design 
engineers are often obliged to use physical prototyping 
for each evolution of the product architecture. Physical 
prototyping is the only way to verify the accuracy of the 
results obtained by the behavior models. To this day, 
excessive use of physical prototyping remains a 
frequent cause of development budget overruns and 
development deadlines.  

 
Figure 1. Illustration of the Design Process 

The lack of accuracy in behavior models has three 
main sources: hypotheses/assumptions used during the 
development of the model, uncertainty in model para–
meters, and inaccuracy of digital resolution [5]. The 
assessment of behavior model accuracy is a difficult task. 
This is particularly true when it is impossible to observe 
the real behavior of this object. When significant back-
ground data exists, the use of statistical tools such as 
case-based reasoning or artificial neural networks can be 
envisaged [6-10]. However, using statistical or artificial 
intelligence tools requires a huge amount of information, 
which is rarely available in the company. Because of the 
difficulties in assessing models' accuracy, there have been 
few attempts to develop a decision-making method that 
considers model accuracy. 

The Method of Imprecision (MoI) was used in 
different fields to deal with uncertainty during embo–
diment design [11-14]. This method uses fuzzy repre–
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sentation to allow the engineer to formalize uncertainty 
when evaluating design solutions. It consists first of 
modeling the inaccuracy in the design parameters by 
linking the latter's values over the interval between 0 
and 1. Fuzzy arithmetic is then used in the last step to 
propagate this inaccuracy to performance values, such 
as maximum resistance, deformation, etc. The main 
shortcoming of MoI in our case is that the fuzzy repre–
sentation of design parameters includes not only the 
inaccuracy in behavior models but also other sources of 
inaccuracy [11]. 

When a "reference" behavior corresponds to the be–
havior observed in the real system, it becomes easier to 
measure model accuracy. The "reference" behavior is 
usually obtained from experimentation on a physical 
prototype. In this case, the accuracy is defined as the 
deviation between the result predicted by the behavior 
model considered and the "reference" behavior [15]. 
Based on this definition, the accuracy measures can be 
decomposed into local or global measures [16]. A local 
measure can be obtained, as an example, by the mini–
mum or maximum of the absolute deviations between 
the values predicted by behavior models (denoted pi) 
and reference values (denoted ip ): 

{ }1,...,
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∈

= −i i
j n

MAX p p  (1) 
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= −i i
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MIN p p   (2) 

A global measure of model accuracy allows, for 
example, the general trend of error in the entire design 
space to be obtained. For example, a global measure can 
be provided by the sum of the deviations squared 
(Equation 3) or simply by the sum of absolute 
deviations (Equation 4): 
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Reference [17] evaluates the quality of a behavior 
model using three criteria which are: parsimony, accu–
racy, and specialization. In their approach, the accuracy 
is assessed based on the distance between the result 
provided by the behavior model and those of a 

“reference” behavior which corresponds, in most cases, 
to the behavior observed on the real system. 

The accuracy measures based on the deviation 
between predicted behavior and a “reference” behavior 
have the advantage of being objective. However, these 
measures consider a limited number of comparison 
points. Therefore, it can be difficult to justify their 
validity for all the design alternatives that one wishes to 
evaluate. This presents the main obstacle for the 
designer when he wants to explore a large design space. 

Within the present work, we propose a decision-
making method that aims to maximize the satisfaction 
of design objectives while taking into account the risk 
related to the accuracy of the behavior models used. 
Such a method aims to reduce development time by 
reducing the number of "trial-and-error" loops and the 
number of prototypes manufactured during product 
development. In the second section, the proposed 
approach is presented, and the two main indicators used 
are detailed. In the third section, the proposed decision-
making method is applied to a case study, and then the 
results are presented and discussed. 

 
2. PROPOSED APPROACH 
 
We propose to treat the problem via two models; each 
one is associated with an output indicator. The first 
model aims to assess the degree of satisfaction with the 
design objectives based on the proposed behavior 
models without considering their level of accuracy. The 
subjective preferences of the decision-maker are 
integrated via the interpretation and aggregation models 
developed.  

The second model aims to assess the risk associated 
with the inaccuracy of the behavior models used. Such a 
breakdown aims to facilitate decision-making by 
allowing the decision-maker to express his aversion to 
risk. The two indicators are determined for each design 
solution. A design solution in our context is defined by 
setting design parameters such as product dimensions, 
materials used, thicknesses, etc. The overall structure of 
the approach is given in Fig. 2. 

Once the two indicators are assessed for each design 
solution, the final step consists in looking in the design 
space for the design solution that maximizes the 
satisfaction of the design objectives (first indicator) and 
that minimizes the risk related to the lack of accuracy in 
behavior models.  

 
Figure 2. Overall Structure of the Proposed Approach 
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2.1 Generalized Performance Index (GPI) 
 
The purpose of using the Generalized Desirability Index 
is to assess the degree of fit between the initially 
established design goals and the results obtained by 
behavior models. Starting from a certain design solution 
(defined by setting design parameters), the behavior 
models (denoted δi) are first used to determine 
performance values (denoted pi). Each design criterion 
is associated with a performance value. For example, 
the design objective "Resisting external load" is 
associated with the performance value "maximum load 
supported", expressed in Newton. Each performance 
value pi is thus associated with a behavior model δi. It is 
worth noticing that the models' accuracy is not taken 
into account at this stage. The approach used to assess 
the GPI is described in Fig. 4. 

Starting from performance values obtained, a prefe–
rence value (scale-free) comprised between 0 and 1 is 
associated with each performance value pi in order to 
assess the degree of satisfaction for the corresponding 
design objective. In the present paper, the transforma–
tion from performance pi to preference value (denoted pi) 
is realized by the mean of desirability functions. The 
desirability functions used must be adjustable according 
to designers' preferences. These functions allow us to me-
asure the degree of satisfaction and thus reflect the sub-
jective judgment of the designers. As can be seen in Fig. 
3, these functions are composed of three zones. The first 
zone corresponds to the interval in which the perfor-
mance value perfectly meets the designer's objective. The 
desirability index is equal to 1 in this case. The second 
zone corresponds to an interval in which this performance 
value totally unmet the designer's objective. The desira–
bility index is equal to 0 in this case. The value of pi from 
which the desirability becomes null is called the accep–
tability threshold (ATi). The third zone is an intermediate 
zone. The performance value obtained partially meets the 
designer's expectations. The desirability index, in this 
case, is comprised between 0 and 1. Design engineers 
initially establish these functions based on their prefe–
rences and the design objectives they want to achieve. 

Starting from performance values obtained, a pre–
ference value (scale-free) comprised between 0 and 1 is 
associated with each performance value pi in order to 
assess the degree of satisfaction for the corresponding 

design objective. In the present paper, the trans–
formation from performance pi to preference value (de–
noted pi) is realized by the mean of desirability func–
tions. The desirability functions used must be adjustable 
according to designers' preferences. These functions 
allow us to measure the degree of satisfaction and thus 
reflect the subjective judgment of the designers. As can 
be seen in Fig. 3, these functions are composed of three 
zones. The first zone corresponds to the interval in 
which the performance value perfectly meets the desi–
gner's objective. The desirability index is equal to 1 in 
this case. The second zone corresponds to an interval in 
which this performance value totally unmet the desig–
ner's objective. The desirability index is equal to 0 in 
this case. The value of pi from which the desirability 
be–comes null is called the acceptability threshold 
(ATi). The third zone is an intermediate zone. The 
performance value obtained partially meets the desig–
ner's expectations. The desirability index, in this case, is 
comprised between 0 and 1. Design engineers initially 
establish these functions based on their preferences and 
the design objectives they want to achieve. 

 
Figure 3. Desirability Functions Used 

Once preference values are assessed for a certain design 
solution, the main challenge is how to combine several 
preference values to provide a generalized judgment on 
the design solution. In this way, it becomes possible to 
compare several design solutions. 

 

 
Fig. 4 Model Used to Obtain Generalized Performance Index 
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2.2 Evaluating the accuracy of behavior models 
 
In the present section, the first evaluation of accuracy is 
proposed using the reference solution. This reference 
solution corresponds to a design solution that was 
prototyped and tested. Therefore, the designers have the 
real behavior (real performance values) of this reference 
solution. This first evaluation, as explained in [16], 
stipulates that the measurement of the accuracy of a 
model must be done by comparing the result predicted 
by the behavior model with that obtained by 
experimentation on a physical prototype. The results to 
be compared in our case are the performance values pi. 
Based on this definition, the accuracy of a behavior 
model δi in our case is obtained from the distance 
between the performance value (denoted p*

i) predicted 
by the behavior model δi and the performance value 
(denoted *

ip  ) obtained from experimentation on refe–
rence solution: 

( )( )= ∑
n ss i i
i

GPI w z   (5) 

In order to determine the parameter s and the 
weights wi, we used the method of indifference points 
[13]. This method is based on the definition of indi–
fference design solutions that have the same perfor–
mance, to determine simultaneously the value for trade-
off parameter s and the weights wi. 

∗ ∗= −i i iE p p   (6) 

Note that the measure of accuracy obtained by (6) is 
expressed in the same dimension as the performance 
variable pi. Therefore, we propose to normalize this 
measurement by transforming it to a dimensionless 
value between 0 and 1, reflecting the level of satis–
faction with the objective of accuracy. Such standar–
dization also aims to simplify the integration of accu–
racy into decision-making. To normalize the measu–
rement given in (5), we first set a threshold deviation 
value, denoted  Ei,s. Compliance with this threshold is a 

necessary condition for using the behavior model. The 
choice Ei,s varies from one objective to another and 
calls on the expertise of the designer: this choice results 
from knowledge related to the expected values of the 
performance value pi. The standard measurement of the 
accuracy of the model δi  is obtained by the relative 
difference between the measured distance Ei, as shown 
in (7), and the threshold distance Ei,s, such as is expres–
sed in the following relation: 
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This normalization step has the same objective as 
desirability functions since it also allows the integration of 
the preferences of the designers vis-à-vis the objective of 
accuracy. Thus, an accuracy MOEi equal to 1 corresponds 
to the case where the behavior model δi is completely exact 
(the most favorable case) because the value of pi that it 
provides is identical to that obtained by physical 
experimentation. An accuracy equal to 0 means that the 
model of behavior δi is unusable (the worst case) because 
of the non-respect of the threshold value of distance Ei,s. 

In the present section, an accuracy measurement was 
proposed based on the distance between the perfor–
mance predicted by the behavior model and that mea–
sured on the reference solution. However, the proposed 
accuracy measurement is relevant only when the design 
parameters (such as product dimensions, materials used, 
etc.) of the proposed design solution are identical to 
those of the reference solution (prototype). The main 
remaining question is how to generalize the measu–
rement of accuracy to the whole design space (Whatever 
the design parameters are). To overcome this issue, we 
proposed in the present section to multiply the accuracy 
measure proposed in Equation 7 by a correction factor. 
The objective is to adapt this measurement when the 
design parameters are different from those of the re–
ference solution (prototype). This correction factor is 
explained in the rest of this section. 

 

Fig. 5 Use of AHP to Evaluate the Strength of Assumption 
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The strength of assumptions is also dependent on the 
variation of design parameters. For example, some 
assumptions can be neglected (become weak) when one 
or more design parameters belong in a certain range. On 
the contrary, other design parameters may have zero 
impact on the assumption, regardless of the values of 
these design parameters. Another kind of pairwise com–
parison is performed in the second phase of AHP to 
consider the impact of design parameters on the dif–
ferent assumptions. This time, we focus on level 3 of the 
hierarchy shown in Fig. 5. For each assumption, pair–
wise comparisons are performed between design para–
meters according to the level of impact on the assump–
tion considered. 

Using the results of the two stages of pairwise com–
parisons (levels 2 and 3), the criteria weights are obta–
ined using the matrix normalization method [21]. A we–
ight is thus attributed to each design parameter. The 
obtained weight, comprised between 0 and 1, reflects the 
influence of the design parameter's variation on the beha–
vior model's accuracy. The obtained weights are denoted 
kij, where i is the index of the behavior model consi–
dered, and j is the index of the design parameter. The 
closer the parameter kij to zero, the higher the im–pact of 
the design parameter DPj of the behavior model δi. 

At this stage, we first measure the accuracy of the 
behavior model based on the distance from the reference 
solution, as shown in (7). However, this measure is 
appropriate only for the prototyped design solution. On 
the other hand, the factors kij, obtained using AHP, 
represent the impact of varying design parameters on 
the accuracy of the behavior model. The final step 
consists of multiplying the first measure of accuracy 
MOEi by factors kij in order to obtain a single indicator 
of accuracy capable of covering the entire design space: 

Other assumptions may be very weak and have a 
neglected impact on the result. The more strong an 
assumption is, the more impact it has on the accuracy of 
the behavior model. In order to take into account this as–
pect, the next step of the proposed method is to hie–
rarchize the different assumptions according to their stre–
ngths. In the present work, we used the Analytic hie–
rarchy process (AHP) [20]. This method uses pair–wise 
comparisons between assumptions. In the first phase, the 
designers performed pairwise comparisons between assu–

mptions. The pairwise comparison procedure is illus–
trated in Fig. 5. As seen in the figure, a linguistic desc–
ription associated with a numerical scale is used to ease 
pairwise comparisons, and the outcomes of all these 
comparisons are organized in the judgment matrix. 

1=
= ×∏

n
i

i i j
j

OMA MOA k    (8) 

The general approach to measure the overall 
measure of the accuracy OMAi is described in Fig. 6. 

 
2.3 Generalized Safety Index (GSI) 
 
Approach In the previous section, we proposed a 
measure of behavior model accuracy. In this section, the 
objective is to integrate this measure of accuracy into 
decision-making. The approach used is similar to the 
FMEA (failure modes and effects analysis) process. The 
failure, in our case, corresponds to the non-respect of 
the acceptability threshold (ATi). 

The intuitive notions of rational human behavior can 
be formalized into a set of axioms that must be satisfied 
by an aggregation operator when the latter is used for a 
product design problem [12]. One of the most important 
axioms is that of annihilation, which is specific to design 
problems. Other authors have argued its validity for 
design problems [22,23]. This axiom states that if the 
desirability index (denoted zi in our study) for any design 
objective is zero (unacceptable), then the overall prefe–
rence (denoted GPI in our case) of the design alternative 
is also zero, which means that the design solution is un–
acceptable. This is in contrast to a decision-making situ–
ation in which all goals can be converted into monetary 
units, such as decisions in the field of economics. In this 
case, two goals can always be negotiated. 

At the level of performance values pi, this is 
expressed by the need to respect the acceptability 
threshold ATi (Fig. 3), specific to each performance 
variable pi. In this section, the objective is to assess the 
risk posed by the inaccuracy of the behavior models on 
non-meeting these acceptability thresholds. In addition 
to the level of accuracy of the model, the estimation of 
this risk depends on two other aspects which are: 

 
Fig. 6 Approach to Determine the Overall Measure of the Accuracy of a Behavior Model δi 
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The safety margin in relation to the threshold of 
acceptability: we consider that the higher the safety 
margin between the value of pi  (provided by the mo–
del) and the acceptability threshold ATi, the less risk 
there is of seeing this threshold not respected because of 
the inaccuracy of the model of behavior used. In the 
present paper, this safety margin will be called “risk 
occurrence” and will be noted Oi, where i is the index of 
the performance value considered. As shown in (9), we 
define Oi as the relative difference between the value of 
pi, obtained by the behavior model δi, and the 
acceptance threshold ATi. 

  meets . 

0   does not meet .

⎧ −
⎪

= ⎨
⎪
⎩

i i
i i

i i

i i

p AT
if p AT

O AT
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The severity of the failure to meet the acceptability 
threshold. Taking into account this aspect makes it 
possible to give more consideration to the design 
objectives, for which the non-respect of the threshold 
ATi is the most critical. This severity factor is denoted 
by Si, where i represents the index of the performance 
variable pi considered. Si will be determined using a 
scale of values (ranging from 0.2 to 1) associated with a 
semantic scale. A value of Si of 0.2 corresponds to the 
most critical level. The scale used for our application is 
given in Table 1. 
Table 1 Graph representations 

Severity 
index Si 

Associated linguistic description 

0.2 

Catastrophic impact: the non-respect of 
acceptability threshold ATi has catastrophic 

consequences for the fate of the product; The 
product cannot be accepted; 

0.4 
Critical impact: failure to comply with the 

threshold ATi leads to very serious undesirable 
repercussions on the quality of the product; 

0.6 
Major impact: non-compliance with the threshold 

ATi has very significant repercussions on the 
quality of the product; 

0.8 
Significant impact: the non-respect of the 
threshold ATi entails a rather important 

repercussion on the quality of the product; 

1.0 
Minor impact: non-compliance with the threshold 
ATi has no significant impact on product quality; It 

can be validated without problem; 
 
The safety index SIi for a design solution and for a 

behavior model δi is determined according to the mea–
sure of accuracy OMAi, occurrence Oi, and severity Si 
by the following expression: 

= × ×i i i iSI OMA O S   (10) 

Once the index SIi is calculated for each of the be–
havior models δi, the generalized safety index for the 
design solution studied is calculated by taking the 
minimum of the indices, as expressed by the relation 
following expression: 

{ }1,...,
max

∈
= i

i n
GSI SI    (11) 

where i is the index of the behavior model, and n is the 
number of behavior models used (it corresponds to the 
number of performance values). 

We chose to use the minimum because we want to 
be conservative in the risk assessment: we consider that 
the riskiest performance value provides information on 
the overall risk associated with the solution. 

 
3. APPLICATION TO THE INDUSTRIAL CASE 
 
In the present section, the proposed method is applied to a 
real industrial case. The component studied in our case is 
a parabolic trough collector (PTC) collector. The main 
role of a collector in a concentrated solar power (CSP) 
plant is both to redirect and concentrate sunlight onto an 
absorber in order to heat the working fluid. The recovered 
heat is then used to produce high-pressure steam, which 
drives a turbine to generate electricity. A part of the 
generated heat can be stored in salt tanks. This allows 
electricity to be produced independently of the sun's 
cycle. In addition, the generated heat can be used for 
other industrial or urban applica–tions such as 
desalination, cooling, air conditioning, etc. 

 
Fig. 7 PTC Solar Collector Structure and Design 
Parameters 

As we can see in Fig. 7, a PTC solar collector is 
mainly composed of reflective mirrors and a supporting 
structure whose function is to maintain the shape of the 
reflective mirrors. A fixing device is made between the 
reflective mirrors and the supporting structure to ensure 
the connection between the two. The solar collector is 
driven by a rotating movement in order to adapt to the 
position of the sun during the day. In our study, only the 
supporting structure is studied. 

The overall objective is to ensure the optimum 
concentration of the sun's rays, in a way that is 
sustainable over time, while being competitive. The 
overall objective is thus broken down into three main 
design objectives which are: "have a low manufacturing 
cost", "have high optical performance" and "withstand 
the external environment well". 

In this case study, the design objective "optical per–
formance" refers to the ability of the reflector to conc–
entrate and reflect the sun's rays correctly on the absor–
ber tubes. The latter directly influences the thermal effi–
ciency of the plant. In order to limit the percentage of  
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rays that deviate from their target, it is necessary to limit 
the deformations of the reflecting mirrors and, therefore, 
specifically of the reflecting support as much as pos–
sible. 

The performance value associated with this objec–
tive is the fraction of reflected sunbeams that fail to 
reach receiver tubes (denoted p1). This fraction must be 
as low as possible to ensure good thermal efficiency. 
The behavior model used to determine this fraction is 
explained in [24]. Regarding the second design objec–
tive, the collector must resist the extreme wind in the 
chosen implementation site. The performance value 
associated with this objective, denoted p2, is the fraction 
between the wind speed supported by the structure and 
the maximum wind speed in the implementation site. 
This fraction must be higher than 1. The behavior model 
used to determine these performance values is also 
detailed in [24]. This model is based on shell-type finite 
element analysis with a highly refined meshing in nods 
connections. The cost of raw materials used for the 
manufacturing of collectors represents about 50% of the 
overall investment cost for a PTC plant [25,26]. For this 
reason, the performance value associated with the ob–
jective "manufacturing cost" is the supporting structure 
mass, denoted p3. 

Different stakeholders in the development project 
were involved to determine the different parameters ne–
eded for the determination of GPI (fig. 4). These 
parameters are the trade-off parameter s and the weights 
wi. The weights obtained for the objectives "optical per–
formance", "wind resistance" and "manufacturing cost" 
are respectively w1 = 0.21, w2 = 0.24 and w3 = 0.55. The 
preference functions for the three design objectives are 
also established during this phase. 

 
Fig. 8 Results Obtained for the Two Indicators GPI and GSI 

The two behavior models associated with the two 
design objectives, "optical performance" and "wind re-
sistance," are both based on shell-type finite element 
analysis with highly refined meshing. In these two mo-
dels, we assume the absence of the buckling pheno-
menon. We also assume that the diagonal bars of the 

truss structure are concurrent with the nodes. These are 
the two assumptions used in these models. For the third 
design objective, the behavior model simply determines 
the structure mass based on the choice of design para-
meters. This model is thus considered accurate. 

A physical prototype has already been made and 
then tested by the company. The prototype testing re-
sults are used in the present paper to measure the be-
havior models' accuracy. A set of 240 design solutions 
was established to explore the design space. Each of 
these solutions is a particular combination of design 
parameters. Each design solution is evaluated in terms 
of generalized performance index GPI and generalized 
safety index GSI. The results are shown in Fig. 8. 

Only 50 of the 240 design solutions evaluated meet 
the minimum validation requirements (compliance with 
the acceptability thresholds ATi). In Fig. 8, we can see 
that among these 50 design solutions, there are only 
seven Pareto-optimal solutions. The other 43 design 
solutions are dominated. Therefore, they have no inte–
rest in our study.The best-performing design solution 
(best GPI) is solution X 1, followed very closely by 
solution X 1. However, the disadvantage of these two 
design solu–tions is their low level of safety, which 
results in low GSI. The candidate solution X 4 is less 
efficient than the solutions X 1 and X 2 (difference of the 
order of 16%), but it presents a very large improvement 
in the indicator GSI (difference of the order of 550%). X 
6 and X 7 are the safest design solutions because they 
have the highest GSI. However, the improvement in the 
GSI  is not very noticeable compared to the design solu–
tion X4. How–ever, the degradation of performance is 
very significant (low GPI). We then consider that the 
design solutions X 6 and X 7 are of little interest in our 
case. 

The design solution X 4 is one of the most interesting 
solutions because it presents a good performance/safety 
compromise. However, the design engineers must pro–
pose actions to improve the safety of this solution 
before validating it definitively. For example, a more 
developed behavior model can be developed to evaluate 
the optical performance and wind resistance. The other 
possible action to make the solution X 4 safer would be 
to manufacture another physical prototype and perform 
mechanical tests to ensure compliance with the two ob–
jectives of mechanical strength and optical performance. 
Although it is effective, this action requires more time 
and resources. 

 
1. CONCLUSION 
 
In the present work, we proposed a decision-making 
approach to support the designer in making these design 
choices during the embodiment design phase. This 
approach aims to facilitate the definition of the product 
architecture. In order to set the design parameters based 
on the results of behavior models requires taking into 
account their level of accuracy. Thus, we first developed 
an approach to measure the accuracy of the behavior 
models used. The measure of accuracy obtained is based 
on AHP and prototype testing. The main originality of 
the measure obtained is its ability to cover the entire 
design space. In the last step of the process, this 
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accuracy measure is used to assess the risk of non-
compliance with the minimum acceptability thresholds. 
A generalized performance index is also used for each 
design solution to assess the overall level of satisfaction 
with the design objectives. Therefore, the decision-
maker has the possibility of exploring the entire design 
space in search of design solutions that offer the best 
compromise between performance and risk linked to the 
inaccuracy of the behavior models. By participating in 
improving the reliability of the choices made on the 
basis of model results, the proposed approach reduces 
the use of physical prototyping, which consumes a lot of 
time and resources. 

In industrial development projects, the ability of 
designers to predict the inaccuracy of the predictions 
provided by the behavioral models used contributes to 
reducing the number of physical prototypes. Indeed, the 
prototyping activity may be limited to candidate solu–
tions with a high level of inaccuracy. However, the pro–
cedure for calculating the different indexes used in the 
proposed approach involves complex mathematical cal–
culations that may be beyond the scope of a design 
engineer's conventional tasks. This difficulty can be 
partially overcome by developing software tools that 
can be integrated into product digital mock-up (DMU) 

An interesting perspective would be the consi–
deration of robustness in the evaluation of design solu–
tions. This third evaluation would take into account the 
impact of variability in the input data (design para–
meters and parameters of the surrounding environment) 
in the fluctuation of the performance of the candidate 
solution. The management and interpretation of more 
than two qualification indices currently constitute a real 
scientific obstacle: what compromise can be achieved? 
Will the use of a Pareto front be essential to visualize 
the solutions (although this one seems unusable beyond 
3 indices)? 
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NOMENCLATURE 

iAT  acceptability threshold 
DI  desirability index 
DP  local heat transfer coefficient 

GPI  generalized performance index of a 
candidate solution 

*GPI  
generalized performance index of reference 
solution  

GSI  generalized safety index 
j

ik  degradation factor 
m  number of performance indexes 
MAE  the sum of absolute deviations 
MSE  the sum of the deviations squared 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

n number of design parameters 
iOMA  overall measure of the accuracy 

iO  occurrence 

ip  performance predicted by behavior models 

ip  reference performance 

iS  severity 

iSI  severity index 
iX Candidate solution 

Acronyms 
 

AHP analytic hierarchy process 
CSP concentrated Solar Power 
FMEA failure modes and effects analysis 
GOWA generalized ordered weighted averaging 
MoI method of imprecision 
PTC parabolic trough collector 

 
 

ИНТЕГРАЦИЈА ТАЧНОСТИ МОДЕЛА 
ПОНАШАЊА У ОДЛУКЕ О ДИЗАЈНУ 

КОРИШЋЕЊЕМ АХП, ФМЕА И ФИЗИЧКОГ 
ПРОТОТИПА 

 
М. Ел Амине, К.Хмина, М. Салаус 

 
Фаза пројектовања остварења састоји се од грубог 
избора/распореда материјала, коришћених техноло–
гија, димензија и главних компоненти. Током ове 
фазе, многи модели понашања се користе за вери–
фикацију постизања циљева дизајна. Недостатак по–
верења у ове моделе због усвојених претпоставки 
доводи до тога да дизајнери реализују многе прото–
типове током развоја производа, узрокујући петље 
које захтевају време/трошкове у пос–тупку „проба- 
грешка”. Предлажемо модел одлучивања који инт–
егрише тачност модела понашања у доношење од–
лука. Циљ је ограничити употребу физичких прото–
типова и побољшати квалитет доно–шења одлука. 
Свака алтернатива дизајна се оцењује коришћењем 
два индикатора. Први је индикатор пожељности 
који мери ниво испуњености циљева дизајна. Други 
индикатор процењује ризик повезан са тачношћу 
модела понашања помоћу АХП, ФМЕА и експе–
рименталних тестова на прототипу. Предложени 
приступ је примењен на развој соларног колектора. 




