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This paper addresses the stress analysis of shrink-fitted thick-walled 
cylinders made of functionally graded material (FGM). Analytical 
solutions are provided for the elastic-plastic behavior of shrink-fitted 
axisymmetric thick-walled FGM cylinders based on the linear plane 
elasticity theory and plasticity laws. Due to the material's functional 
gradation, mechanical characteristics like Young's modulus, yield stress, 
and plastic parameters are controlled by a power function along the wall 
thickness. Considering a plane strain case, elastic-perfectly plastic model 
and Von Mises yield criterion; theoretical solutions are obtained for both 
elastic and plastic phases. The radial, hoop, axial, and equivalent Von 
Mises stresses are obtained for up to 25%, 50%, and 75% of cylinder 
plasticization for the elastic and plastic zones. Stresses are given in terms 
of interference and geometrical and mechanical parameters of the 
assembly. In addition, the interferences to start plastic deformation and the 
full plastic collapse of the cylinder are discussed. Moreover, the effect of 
the gradient index on the contact pressure and both the start of yield and 
plastic collapse pressures are conducted. The analytical results found in 
the current research are compared with the numerical solutions carried 
out by Ansys Workbench. Both results show a good agreement. 
 
Keywords: Functionally graded material, Shrink-fit assembly, 
Interference, Von Mises’s yield criterion, Plasticity, Ludwik hardening 
law, Graded-index, FEM. 

  
 

1. INTRODUCTION  
 

Functionally Graded Materials (FGMs) are a unique 
class of composite materials that possess varying mate–
rial properties in a desired direction or orientation. Their 
tailored material properties make them very appealing 
for use in various applications, including the potential 
reduction of stresses through thickness, improved 
thermal properties, higher fracture toughness, reduced 
stress intensity factors [1], and the stability of structures. 
Research studies in aerospace engineering have focused 
on the stability of plates and shells made from com–
posite materials and honeycomb structures [2-5].   
FGMs are increasingly used in cutting-edge sectors that 
require high performances, notably aerospace [6], 
automotive, tooling cat, biomedical, electronics, nuc–
lear, and oil and gas sectors. Fully graded materials are 
attractive when optimizing pressure vessels and other 
structures. Because of their change of properties with 
the geometry, they have the capacity to reinforce the 
structure where required. For example, in pressure ves–
sels, a higher strength is required at the inner diameter 
of cylinders where the stresses are high. The main 
application is high-pressure vessels and gun barrels, 
where new materials coupled to the autofrettage process 
are employed to increase the capacity to withhold higher 
pressures. High torque transmission, such as in ship 

propellers, is also another application.    Miscellaneous 
methods have been used to investigate the analysis of 
FGM thick-walled cylinders subjected to mechanical 
and/or thermal loading using various approaches and 
assumptions. Shi et al. treated two types of hetero–
geneous elastic hollow cylinders: multi-layer and conti–
nuously graded materials. A method is developed to 
find the exact solution for N-layered FGM cylinders 
under uniform pressures, while a displacement method 
is used for continuously graded materials. The results 
are compared with numerical and reference counter–
parts, and the inherent properties are discussed [7]. 

The elastic-plastic analysis for functionally graded 
thick-walled tubes subjected to internal pressure was 
investigated by Libiao Xin et al. using the rule-of-
mixture with a function of radius to describe thermo-
mechanical parameters of an FGM cylinder [8]. Bezzie 
et al. explored the impact of a graded index on the 
elastic responses of an axisymmetric pressurized and 
heated thick-walled functionally graded material (FGM) 
cylinder under plane strain conditions [9]. Nayak et al. 
investigated the propagation of the elastic-plastic front 
of a functionally graded rotating disk under centrifugal 
and thermal loads in the post-elastic regime. They have 
used a power law variation of the volume fraction, 
Hankey's deformation theory of plasticity, and Von 
Mises yield criteria to solve the displacement field [10]. 
On the other hand, the use of shrink-fit assemblies is 
growing for designing composite tubes, high-pressure 
vessels, nuclear reactors, and tank barrels [11]. This 
technique involves cooling down a smaller cylinder to 
fit into a larger cylinder, which then expands and pre–
sses against each other. The strength of the connection 
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depends on the contact pressure and friction coefficient 
between the two surfaces. Proper design and manu–
facturing are crucial for achieving the desired func–
tionality. Numerous studies have been carried out using 
experiments and semi-analytical, analytical, and nume–
rical methods. The majority of research has focused on 
one of two things: they either analyze the torque trans–
mission capacity as a function of interference, or they 
optimize the design to minimize manufacturing costs 
and weight. In 2020, An analytical formulation for 
shrink-fitted axisymmetric thick-walled FGM cylinders 
using linear plane elasticity theory was conducted [12]. 
The effect of radial interference on the torque capacity 
of press-and shrink-fit gears has been investigated using 
finite element analysis in order to determine the static 
and dynamic coefficient of friction and address exce–
ssive interference to prevent gear radial deformation 
[13]. The influence of radial interference on the torque 
capacity of shrink-fit camshafts was a similar topic that 
was covered by J. Zhao et al. in 2019 [14]; the results 
are anticipated for shrink-fit camshaft design and pro–
duction. Mouâa et al. presented an analytical model for 
describing stresses and strain in a shrink-fit plastically 
deformed assembly under creep [15]. Also, Xiang-Fa 
Wu et al. investigated the stress and displacement fields 
in multiple shrink-fitted elastic cylinders under thermal 
and mechanical loads. The problem comes down to the 
evaluation of the interface pressures of neighboring 
tubes using tridiagonal linear algebraic equations [16]. 
In 2018, Kazemzadeh et al. explored the impact of 
shrink-fitting on the design of pressurized multi-layer 
composite tubes. It provides analytical solutions for 
structural response calculations and employs a nume–
rical evolutionary optimization algorithm for weight and 
cost minimization. The results demonstrate the fact that 
the shrink-fitting parameters can lead to more econo–
mical or lightweight assemblies, especially in cases with 
higher internal-to-external pressure ratios [17]. In 
addition to all the foregoing studies, many focused on 
shrink-fit FGM assemblies using shafts that remain in 
the elastic domain. However, few of these studies were 
carried out on plastic behavior. In this work, the inter–
ferences that start yield and cause plastic collapse in an 
FGM shrink-fitted assembly were examined for various 
nonhomogeneity coefficients. Additionally, the residual 
pressure and stresses in the elastic and plastic zones 
were assessed for various nonhomogeneity coefficients. 
In order to evaluate and confirm the reliability of the 
precise solution, the results of the analytical model are 
contrasted with those of their FEM counterparts.  

 
2. THEORETICAL ANALYSIS 

 
Consider a shrink-fitted assembly of an FGM hollow 
cylinder of inner and outer radii, Ri and Ro, respec–
tively, and an FGM hollow cylinder of inner and outer 
radii, ri and r0 respectively, as shown in the schematics of 
the FGM shrink-fitted cylinders in Fig.1. The prob–lem 
studied in cylindrical coordinates (r, θ, z). It is assumed 
that the FGM cylinders have a constant Poison’s ratio and 
that they undergo a plastic defor–mation under plane 
strain (εz = 0) [18]. Figure 1 gives the geometry 
characteristics of the joint before assembly. 
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Figure 1. Joint before assembly 

Young's modulus E and the yield stress σy are 
considered to vary with the radius according to the 
power-law expressed by (1) and (2). 
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where E0, σos, σoc are the reference values of E and σy, 
respectively, at the inner radius of the inner and outer 
cylinder, and e, s are gradient indexes. An elastic-plastic 
relationship with a power law strain hardening describes 
the behavior of the material model, expressed as follows: 

( ) ( ) ( )eq eq eq yr E r ifσ ε σ σ= ≤   (5) 

( ) ( ) ( ) ( )m
eq eq eq yr A r B r ifσ ε σ σ= + ≥   (6) 

where A(r) and B(r) are the Ludwick yield and work-
hardening coefficient, respectively, which are power 
functions of the radius given respectively by (7) and (8) 
below, and m is the strain-hardening exponent. 
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where Aa and Ba are the reference values of Ludwik 
plastic parameters A(r) and B(r) obtained at the inside 
radius respectively, n and k are the gradient parameters. 

When it comes to FGM materials, depending on the 
geometric and mechanical characteristics, the plastic 
deformation can start in the inner or outer cylinders or in 
both at the same time. In this article, we assume that only 
the outer cylinder undergoes elastoplastic deformation. 
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3. STRESS ANALYSIS   

 
3.1 Elastic Analysis  

 
As the interference increases, the deformation of the 
shrink-fit assembly is initially purely elastic. 

The expression of the interference can be determined 
by considering the geometrical compatibility of the 
radial displacements:  

( ) ( )u R u rr r oi= −δ    (9) 

The radial of the outer cylinder is given by [19] 
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and that of the inner cylinder 
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where =
roYs ri

 and =
RoYc Ri

 are the ratios between the 

outer and inner radius of the inner and outer cylinders, 
respectively. γ and Eb are given by     
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Eb is a constant depending on the mechanical para–
meters of the material. Substituting (10) and (11) into 
(9) gives: 
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The contact pressure is given by  

δ
=Pc K

                                     (16) 

where K is a function of the geometrical and mechanical 
parameters of the assembly. 
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The contact pressure dependent on δ and K exp–
ressed as a function of the geometrical and mechanical 
parameters of the assembly. The stresses in the radial, 
tangential and longitudinal directions are given hereafter 
for a plain strain.  

For the inner cylinder  (ri ≤ r ≤ r0), the stress field is : 
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For the outer cylinder (Ri ≤ r ≤ R0), the stress field is: 
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 The interference δ increases until it reaches the in–
terference that causes the onset of yielding of the outer 
cylinder. In what follows, it is assumed that the yielding 
starts from the inner surface of the hollow cylinder 
when the interference δsy value is high. 

 
3.2  Elastic-plastic analysis  

 
For significantly elevated values of functionally graded 
materials, the initiation of yielding may emanate in 
either cylinders – be it the inner or outer surfaces – con–
tingent upon the geometric and mechanical attributes of 
the material [20]. The yielding process commences at 
the inner surface of the hollow cylinder, progressively 
extending radially until it reaches a radius, denoted as rc 
the interface radius that limits the elastic and plastic 
regions when the interference exceeds δsy (Figure 2). 

ir
or

cr
oR

Plastic zone
Elastic zone

 
Figure 2. Shrink-fit assembly showing the outer cylinder 
elastic and plastic zones 
 

3.2.1  Beginning of plasticity 
 

The Von Mises equivalent stress is expressed as follows 
[21]: 
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Applying the Von Mises yield criterion at ir R=  
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Substituting (21) and (22) into (24) and replacing r 
by Ri into (25) gives the pressure that starts yield in the 
outer cylinder: 
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The interference that starts yield in the outer cylin–
der is given by equating Eqs. (26) to (14)  
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With the interference is less then δsyc, the assembly 
remains elastic. Above this value, the cylinder will ex–
perience partial deformation. 

 
3.2.2 Partial plasticity 

 
When the interference increases beyond δsyc, a plastic 
zone of radius rc develops. The stress-strain relationship 
in the plastic range is considered to follow  Ludwick 
power law given by Eq. (6). 

Under the plain strain condition εz = 0 and consi–
dering the incompressible volume assumption, it gives: 

ε εθ= −r                               (29) 

Substituting Eq.(29) into the equivalent strain gives: 
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Substituting  (31) and (32) into (29) and integrating ur 
with respect to r gives: 
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where ur is the radial displacement function of the 
radius r and C is an integration constant. 

Neglecting the body forces, the equilibrium equation 
of an axisymmetric problem is given by:  
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 Substituting (6) into (35)  gives and integrating yie–
lds to: 
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Combining  (30), (32) and (33) gives: 
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Substituting (37) and (8) into (36) and integrating 
gives the stresses in the plastic zone Ri ≤ r ≤ r0                                     
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where C1 and C2 are integration constants. 
By applying the Von Mises criterion at r = rc, the 

following equations are derived.  
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As the plastic region reaches the radius rc, the fol–
lowing boundary conditions apply. 
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defined as follows: 
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and the interface contact pressure to start the yielding 
cylinder, respectively.  

The continuity of stress at the contact hollow shaft- 
hollow cylinder region is expressed by (44) 
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The constants C1 and C2 are determined from previ–
ous boundary condition equations as follows : 

1/2 2

2 3
1 2

σ
+ − + −

−

=

⎛ ⎞⎛ ⎞ ⎛ ⎞⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

ms m k n m k
r rc cAoc aR RR i iiC

Ba
  (45) 

2

2 1
2 223

σ
+ −⎡ ⎤⎛ ⎞⎛ ⎞⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎜ ⎟⎝ ⎠⎢ ⎥⎜ ⎟= − − +
+ −−⎢ ⎥⎜ ⎟⎛ ⎞⎢ ⎥⎜ ⎟− ⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎝ ⎠⎣ ⎦

s m k
rc

oc RA iaC Pcc n m kn k m rcAa Ri

 (46) 

By using (40) and replacing Yc by =
RoYc rrc c  

and 

Pc by Prc
, the pressure at the elastic-plastic interface is 

expressed as follows: 
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By using (36) and (38), the residual contact pressure 
is expressed as follows: 
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The radial stress of the elastic zone, as described by 
(21), is equal to the radial stress of the plastic zone, as 
expressed by (38), at the elastic-plastic interface radi–
us, r = rc. As a result, the numerical solution of the 
subsequent nonlinear equation yields the elastic-plastic 
interface radius, rc: 
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Substituting  (45) and (46) into (38) and (39) gives 
the radial and hoop stresses in the plastic zone (Ri ≤ r ≤ 
rc) as follows: 
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The stresses in the elastic zone of the cylinder are 

determined  by replacing Ri by rc and Pc by Prc in (21) 
and (22)  (elastic zone rc ≤ r ≤ R0) 

1
2

2 2
r

2 2

( ) P

γ γ

γ γσ

−
−

−

⎛ ⎞ ⎛ ⎞⎜ ⎟ ⎛ ⎞ ⎛ ⎞⎜ ⎟⎝ ⎠=− −⎜ ⎟ ⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠⎜ ⎟

− ⎝ ⎠

e

cc
r c

o o
r rc c

r
r r rr

R R
Y Y

 (52) 

( )

( )

1 22

1( ) Pr2
2 2 2

γ

γ

σθ γ γ γ

γ

−⎛ ⎞
− ⎜ ⎟⎛ ⎞⎛ ⎞ ⎜ ⎟−⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠⎝ ⎠ ⎜ ⎟=

− ⎜ ⎟
⎜ ⎟⎛ ⎞− ⎜ ⎟− +⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

e
rr e

Rr occ r
c

rY Yr r ec c Ro

    (53) 

where = o

c

R
Yr rc

 is the ratio between the outer and in–

terface radius of the outer cylinder. 
 
3.2.3 Plastic collapse analysis 
 
The cylinder collapses as the interference rises and rc 
equals the outer radius R0.  

At this point, the elastic zone disappears, and the 
hollow cylinder totally plasticizes. In this instance, as–
suming the radial stress indicated by (50) at the outer 
radius to equal zero: 

( ) 0σ
=

=r Roc
r                             (54) 

Replacing rc by R0 in (45), the integration constant 
becomes as follows : 
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The pressure necessary to cause the plastic collapse 
of the hollow cylinder, Pspc, is found in this instance and 
then expressed as follows: 
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The interference causes plastic collapse of the 
hollow cylinder is obtained as follows by replacing C1 
by C1cp and PC by Pspc in (49).  
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4. VALIDATION USING NUMERICAL FINITE 

ELEMENT MODEL 
 

The developed analytical approach was validated using 
the finite element model (Figure), which runs under 
ANSYS software. The geometrical and mechanical 
characteristics of the joint are shown in Table 1 below. 
Table 1. Geometrical and mechanical characteristics 

Outer cylinder 
Ri (mm) R0 (mm) σoc (MPa) E0 (GPa) s e 

40 55 400 200 2.2 3.5 
Aa(MPa) Ba(MPa) n k δ (mm) 

360 480.5 2.2 2.72 0.085 
Inner cylinder 

ri (mm) r0 (mm) σoc (MPa) E0 (GPa) s e 
20 40 600 200 2.2 3.5 

Aa(MPa) Ba(MPa) n k δ (mm) 
360 480.5 2.2 2.72 0.085 
 
The inner and outer cylinders were modeled using 

isoperimetric 8-node plane strain elements. However, 
due to symmetry, only 25% of the assembly was mode–
led. The contact surfaces of the assembly were modeled 
using special contact and target elements; the friction 
between the mating surfaces was not taken into account 
because a prior study on a similar work [17] demon–
strated that friction had no discernible effect on the final 
results. The FE model mesh refinement was validated 
using a mesh convergence criterion; in other words, the 
meshing was refined until the change in the contact 
pressure was less than 1%. The other parameters, like 
the stresses and displacements, were found to be 
relatively less sensitive to the mesh refinement. 

 
Figure 3. Finite element model in ANSYS. 

5. RESULTS AND DISCUSSION 
 
As an illustration, Figure 4 displays the variation in the 
elastic modulus E(r) as a function of radial position in the 
shrink-fit assembly for different values of the gradient 
index. The variation of these attributes can increase or 
decrease based on the value of the latter. When e is 
positive, the elastic modulus of the inner and outer hol–
low cylinders of the shrink-fit assembly has values that 
progressively increase from their inner to outer surfaces. 
However, with negative values of e, it decreases with the 
radius. Depending on the loading conditions, the value of 
e can be adjusted to minimize the stresses. 
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Figures 5 and 6 show the variation of radial, hoop, 
axial, and equivalent stress across the thickness of shr–
ink-fit assembly for an elastic deformation (δ = 0.07) and 
elastic-plastic deformation (δ = 0.084) of the outer 
cylinder. It was found that a plastic zone developed from 
the inner surface of the outer cylinder. Therefore, the 
radius of plasticity depends on the value of the in–
terference; it increases with the increase in the latter until 
the plastic collapse of the hollow cylinder is achieved. 

 
Figure 4. Variations in elasticity modulus E( r) across  
thickness of shrink-fit assembly for different values of  
gradient index e. 

 
Figure 5. distribution of radial, hoop, axial, and equivalent 
residual stresses across the thickness of an elastically 
deformed shrink-fit (δ = 0.07 mm). 

 
Figure 6. distribution of radial, hoop, axial, and equivalent 
residual stresses across thickness of an elastic-plastic 
shrink-fitted assembly (δ = 0.084 mm). 

 
Figure 7. distribution of radial stress across the thickness 
of 25%, 50 % and 75% plasticized shrink-fit assembly. 

 
Figure 8. distribution of hoop stress across the thickness 
of 25%, 50 % and 75% plasticized shrink-fit assembly. 

 
Figure 9. distribution of von mises stress across the 
thickness of 25%, 50 %, and 75% plasticized shrink-fit 
assembly. 

The distributions of the radial, hoop, axial, and equi–
valent stresses across the thickness of the cylinder are 
depicted in Figures 7–9, with the outer cylinder defor–
ming plastically by 25, 50, and 75% of its thickness. 
The elastically deformed case is conducted with in–
terference of 0.07 mm, the 25% plasticization case with 
0.084 mm, the 50% plasticization case with 0.089 mm, 
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and the 75% plasticization case with 0.093 mm. In all 
cases, e = 3.5 and m = 0.4. 

The radial stress exhibits an increasing trend with the 
rise in interference values. Consequently, there is an 
augmentation in the residual contact pressure at the 
interface, which is advantageous for efficiently trans–
mitting substantial torque in shrink-fit assemblies. Ho–
wever, it is noteworthy that as the interference increases, 
the plastic zone of the hollow cylinder also increases. 
This underscores the distinctive feature of FGM mate–
rials, showcasing their adaptability to address certain 
challenges by adjusting mechanical and geometric cha–
racteristics to achieve desired performance outcomes. 

Figure 10 illustrates the impact of the interference 
on the residual contact pressure for different gradient 
index e. As the interference increases, there is a concu–
rrent elevation in the residual contact pressure. Addi–
tionally, it's noteworthy that the residual contact pres–
sure increases with the increase of the gradient index. 

 
Figure 10. Influence of interference value on residual con–
tact pressure for different values of gradient index e. 

Figures 11, 12,13, and 14 show the influence of the 
gradient index e in the case of δ = 0.085 mm on the 
radial, hoop, axial, and von Mises equivalent stresses. 
Figure 11 displays the radial stress distribution within 
the shrink-fit assembly composed of Functionally 
Graded Materials (FGMs) cylinders, plotted against the 
normalized radius. The graph presents these distri–
butions for different values of the gradient index e, with 
a specified interference value of 0.085 mm. Negative 
stress values on the graph indicate compressive residual 
stresses, which are typical in shrink-fit configurations 
due to the tight fit between inner and outer cylinders. 
The stress distribution is affected by the gradation in the 
material composition of the FGM. The value of 'e' 
affects the magnitude and distribution of compressive 
stresses due to the interference fit. A more significant 
gradient in material properties can lead to a more 
pronounced variation in stress levels. Figure 12 depicts 
the distribution of hoop stress within the assembly. 
They are significantly influenced by the non-homo–
geneity of the material. Higher values of 'e' might 
correspond to greater stiffness towards the outer radius, 
affecting the stress distribution accordingly. 

Figure 13 depicts the axial stress distribution within 
a shrink-fit assembly as a function of the normalized 
radius for a specified interference value of 0.085 mm. 

The graph illustrates how different values of the 
gradient index e influence the axial stress within the 
material. The larger the e value, the more significant the 
deviation of the stress from zero, implying that the 
material's gradation has a notable impact on the axial 
stress levels. The effect of 'e' on the axial stress is 
crucial for designing FGM cylinders that can withstand 
specific load conditions without yielding, especially in 
applications where the axial load is a critical factor. 

0.4 0.5 0.6 0.7 0.8 0.9 1
raduis/outer raduis

-150

-100

-50

0
e=-2 e=-1 e=0 e=1 e=2

 
Figure 11. Radial stress distributions for different values of  
the gradient index e (δ = 0.085 mm ) 

      

 
Figure 12. Hoop stress distributions for different values of 
the gradient index e ( δ =0.085 mm ). 

 

 
Figure 13. Axial stress distributions for different values of 
the gradient index e (δ = 0.085 mm) 
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The importance of the level of stress reached is 
comprehended by the equivalent stress distributed on 
the thickness of the inner and outer cylinders. This is 
depicted in Fig. 14 where the high values are located at 
the inner surface of the outer cylinder for all values of 
the gradient index.   

         

 
Figure 14. Von Mises equivalent stress distributions for 
different values of gradient index e (δ = 0.085 mm)  
 

Figures 15 and 16 depict the influence of the Ludwik 
parameter ‘m’ on the radial and hoop stresses, consi–
dering an interference value of δ = 0.085 mm. It is evi–
dent that the radial and circumferential stresses remain 
unaffected by the Ludwik work-hardening exponent m 
of the FGM material. Consequently, it can be concluded 
that ‘m‘ has an insignificant impact on the residual 
contact pressure. 

 
Figure 15. Radial stress distributions for different values of 
Ludwik parameters m (δ = 0.085 mm, e=3.5 ) 

The impact of the gradient index e on the inter–
ference to start yield and the interference to cause plas–
tic collapse of the outer cylinder, respectively, is 
depicted in Figures 17 and 18. Both interferences 
decrease as the gradient index increases. Table 2 shows 
the pressures generated at the interface by the interfe–
rence that causes the start of yield and the plastic col–
lapse of the outer cylinder for different values of the 

gradient index, noting that the latter is rather constant 
for this particular case. 

In order to achieve a greater operating safety margin 
against yield and plastic collapse in FGM shrink-fitted 
assemblies, higher interference is preferable, and 
therefore, a low gradient index could be a solution. 

 
Figure 16. Hoop stress distributions for different values 
of Ludwik parameters m (δ = 0.085 mm, e=3,5 ) 

 
Figure 17. Interference to start yield of the outer cylinder 
for different values of gradient index e 

 
Figure 18. Interference to start the plastic collapse of the 
outer cylinder for different values of gradient index e 
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Table 2. Yield and collapse pressures of an FGM fol–low 
cylinder for the different values of the gradient index. 

e -2 -1 0 1 2 
Start yield 
pressure Psy 
(MPa) 

84.9394 95.8981 108.7900 123.9318 141.6566

Plastic col–
lapse pressure 
Pspc (Mpa) 

222.7763 220.8556 219.0909 217.4679 215.9739

 
6. CONCLUSION 

 
In the realm of small deformation theory and utilizing the 
von Mises criteria, this article introduces analytical 
solutions for the elastoplastic stress behavior of a shrink-
fit assembly constructed from Functionally Graded Ma–
terial (FGM). Analytical and numerical methods were 
compared under plane strain conditions for validation 
purposes. The study delves into purely elastic, partially 
plastic, and fully plastic stress states of the assembly, 
exploring scenarios with a progressively increasing inter–
ference value. Additionally, the article unveils the impact 
of both the materials and geometry on the assembly, 
highlighting the FGM's adaptability to meet operational 
requirements. The results demonstrate a noteworthy con–
cordance between the analytical and simulation data. 

It should be noted that the residual contact pressure 
increases with the increases interference value in both 
the elastic and plastic ranges. In addition, the residual 
contact pressure decreases with low values of the gra–
dient index of the outer cylinder. These results provide a 
basis for determining the maximum allowable inter–
ference to avoid adverse effects on the assembly.  

This work addresses the stresses and residual contact 
pressure that are presented as functions of interference, 
which has not been addressed previously. These results 
provide a basis for determining the maximum allowable 
interference to transmit maximum torque, which is the 
primary purpose of shrink fitting while avoiding adverse 
effects on shrink-fitted assemblies. 
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NOMENCLATURE 

ri, r0 
Inner and outer radii of the inner cylinder 
(mm) 

Ri, R0 
Inner and outer radii of the outer cylinder 
(mm)  

rc 

Outer cylinder elastic-plastic interface 
radius 
(mm) 

r, θ polar coordinates 
E Young’s modulus at r (MPa) 

Es 
Young's modulus of the inner cylinder 
(MPa) 

Ec 
Young's modulus of the outer cylinder 
(MPa) 

E0 Young’s modulus at r = ri and R = Ri, MPa 
A, B Ludwik plastic parameters at radius r, MPa 
Aa, Ba Ludwik plastic parameters at r = ri, MPa 
e,s,n,k FGM gradient indexes 
m Strain hardening exponent 

Yc = R0/Ri 
Outer to inner radius ratio of the outer           
cylinder 

Ys = r0/ri 
Outer to inner radius ratio of the inner           
cylinder    

ur Radial displacement (mm) 
Pcsyc The pressure that starts yield in the outer 
Pi Internal pressure (MPa) 
Pc Interface contact pressure (MPa) 

rcP  Pressure at elastic-plastic interface (MPa) 
Prcsyc  Contact pressure that starts yield (MPa) 

spcP  The pressure that causes plastic collapse  
 (MPa) 

C1, C2, C3 Integration constant 

Greek symbols 

σyc Yield stress of outer cylinder (MPa) 
σys Yield stress of inner cylinder (MPa) 
σoc Yield stress of outer cylinder at r = Ri  

(MPa)    
σos Yield stress of inner cylinder at r = ri 

(MPa) 
ν Poisson’s ratio 

σeq Equivalent stress (MPa) 
εeq Equivalent strain (mm/mm) 
σr, σθ, σz Radial, tangential, and longitudinal stresses, 

respectively (MPa) 
εr, εθ, εz Radial, tangential, and longitudinal strains, 

respectively (mm/mm) δsyc 
δsyc Interference that starts yield (mm) 
δspc Interference that causes plastic collapse 

(mm) 

Superscripts 

s inner cylinder 
c outer cylinder 

Acronyms 

FGM Functionally Graded Material 
FEM Finite Element Method 

 
 
АНАЛИЗА ЕЛАСТИЧНО-ПЛАСТИЧНОГ 
НАПРЕЗАЊА СКУПЉАЈУЋИХ ДЕБЕЛИХ 

ФГМ ЦИЛИНДАРА  
 

С. Зринеј, Н-Е. Лагзале, А-Х.А. Бузид 
 

Овај рад се бави анализом напрезања скупљајућих 
цилиндара дебелих зидова од функционално класи–
фикованог материјала (ФГМ). Предложена су ана–
литичка решења за еластично-пластично понашање 
скупљајућих осе симетричних ФГМ цилиндара де–
белих зидова на основу теорије еластичности у ли–
неарној равни и закона пластичности. Због функ–
ционалне градације материјала, механичке карак–
теристике попут Јанговог модула, напона течења и 
пластичних параметара контролишу се функцијом 
снаге дуж дебљине зида. Узимајући у обзир раван 
деформациони модел, еластично-савршено пластич–
ни модел и Фон Мизесов критеријум приноса; 
добијају се теоријска решења и за еластичне и за 
пластичне фазе. Радијални, обруч, аксијални и екви–
валентни Фон Мизесови напони се добијају за до 
25%, 50% и 75% пластификације цилиндра за елас–
тичне и пластичне зоне.  
Напони су дати у смислу интерференције и 
геометријских и механичких параметара склопа. 
Поред тога, разматрају се смет–ње за покретање 
пластичне деформације и потпуни пластични колапс 
цилиндра. Штавише, проводе се утицај индекса 
градијента на контактни притисак и притисак на 
почетак приноса и притисак пластичног колапса. 
Аналитички резултати пронађени у овом 
истраживању упоређују се са нумеричким реше–
њима које је спровео ANSYS Воркбенцх. Оба резул–
тата показују добро слагање. 

 


