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Automotive Air Conditioning System (AACS) involves phase change of the 
refrigerant, to provide a comfortable environment in the vehicle cabin. The 
phase change is governed by many complex equations. Therefore, a 
technique that can validate the results and predict the system performance 
is required to avoid tedious calculations. Deep Neural Networks (DNN) 
are better at learning complex non-linear relationships between 
performance metrics. Experimental data is used to train the specified DNN 
model. Compressor speed, air temperature at the inlet of the evaporator, 
and refrigerant flow rate are used as input, while coefficient of 
performance, compressor work, and heat loss have been used as output 
parameters to train the model. Predicted results are compared by using 
statistical measures such as Root Mean Square Error, Mean Square Error 
as well as Correlation Coefficient. Based on the results obtained, the 
specified DNN model can be effectively used in predicting and validating 
the performance of the AACS.  
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1. INTRODUCTION 
 

An Automotive Air Conditioning System (AACS) is 
used for conditioning the air so that the environment 
inside the passenger compartment becomes comfortable.  
AACS maintains proper conditions within the car with 
the help of four primary components (compressor, con–
denser, expansion valve, and evaporator). The compre–
ssor of the AACS is attached to the engine using a belt 
drive. Therefore the speed of the compressor is admi–
nistered by the engine. The engine's operating condi–
tions change throughout the journey since they can 
range from idling in rush-hour traffic to running at high 
speeds on the interstate. Assortment in the climate 
conditions, as well as driving conditions, leads to comp–
lications in AACS compared to the static air condi–
tioning system as given by Kargilis [1]. Air condi–
tioning systems also affect the temperature and speed of 
the engine as described by Bamisaye et al. [2]  

The performance of the AACS was studied experi–
mentally by numerous researchers before its develop–
ment in computer technology. The experimental proce–
dures are more costly because of the initial expenditure 
required to construct an experimental setup, whereas the 
theoretical study entails more assumptions and complex 
equations. To overcome these limitations soft compu–
ting techniques have gained more importance in the 
recent past. Development in techniques like Artificial 
Neural Networks (ANN), genetic programming, fuzzy 
logic control, and data mining contributes to a wide 
range of applications. Thermal engineering is one of the 

key applications in it. The fundamental reason why 
ANN is gaining popularity is that it is effective at 
identifying the intrinsic relation between any set of 
inputs and outputs that do not require a physical model, 
regardless of how complicated the relationships are, 
how many variables are present, how uncertain the input 
and output data are, and how external, unknowable 
parameters may affect performance.  

ANNs are computational models inspired by the 
structure and function of biological neural networks. 
They consist of interconnected nodes organized into 
layers including input, hidden, and output layers. Each 
connection between nodes is associated with a weight 
that is adjusted during the learning process. DNNs, on 
the other hand, are a specific type of ANN that contains 
multiple hidden layers between the input and output 
layers. These deep architectures allow for more complex 
representations of data to be learned compared to 
shallow neural networks with fewer hidden layers. In 
summary, DNNs are a specialized form of ANN with 
multiple hidden layers, enabling them to learn intricate 
representations of data for various tasks. While ANNs 
provide the foundation, DNNs extend this architecture 
to handle more complex learning tasks by leveraging 
deep hierarchical representations. 

AACS performance is governed by complex equa–
tions. Moreover, the operating conditions of the system 
such as engine speed, inlet air temperature, and mass flow 
rate of the refrigerant are dynamically changing. During 
operation, refrigerant undergoes phase change. The phase 
change of the refrigerant through micro channels is not 
yet completely understood. Hence gene–ral set of equa–
tions can't be applied to the system which will give accu–
rate results irrespective of operating conditions. Tradi–
tional methods may struggle to handle high-dimensional 
data effectively. Calculation of these complex sets of 
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equations is time-consuming and cost–lier. To overcome 
these problems, the DNN model is developed to predict 
the performance of AACS at diffe–rent operating 
conditions. The performance of AACS is measured in 
terms of coefficient of performance, heat loss, and comp–
ressor work. Therefore these parameters are considered as 
output of the DNN predictions in this research work. In 
summary, the DNN model is deve–loped to obtain more 
accurate results and predict the results in any operating 
conditions without traditional tedious calculations.  

 
2. LITERATURE REVIEW 

 
The use of ANN in different fields is growing to avoid 
the complexity of the problems to be solved, but on the 
counter, it should not hamper the accuracy of the results 
obtained. Deep learning has a wide range of appli–
cations for example – autonomous vehicles, facial re–
cognition, object detection, image segmentation, senti–
ment analysis, Machine translation, Disease diagnosis, 
Risk assessment, financial forecasting, energy forecas–
ting, etc. In this research deep learning is used to predict 
the outcomes of the AACS without tedious calculations. 
The use of ANN and DNN is summarized below-  

According to Yang [3], two more benefits of using 
ANN in general thermal problems are its fault tolerance 
and adaptability to changes in parameters.  Yilmaz and 
Atik [4] concluded that ANN can be used in the per–
formance estimation of heat exchangers with suitable 
network architecture and training sets.  Datta et al. [5] 
provided predictions of AACS using the Lavenberge- 
Marquardt algorithm of ANN and concluded that a 
forecast of the AACS is possible by using ANN. After 
evaluating fan coil power demand predicting ANN, Yaser 
et al. [6] stated that deep learning architectures may be 
further researched in the future. ANN and adaptive neuro-
fuzzy were compared for various refrigerants by Arzu [7] 
and discovered that the ANN model is marginally 
superior for R134a refrigerant. After reviewing more than 
90 studies, Mohanraj et al. [8] came to the conc–lusion 
that ANN may be employed effectively and accu–rately 
in the fields of heat transfer and air conditioning. A 
mobile air conditioning system was simulated using ANN 
by Atik [9], who detailed the impact of charge level and 
compressor rotation speed. An ANN was used by Belman 
et al. [10] to undertake a statistical study of the energy 
performance for a vapor compression system using 
R1234yf as the working fluid. For approximating air 
conditioning systems, Adelekan et al. [11] suggested 
feedforward neural work is an excellent predictive model; 
however, advancements in its performance are dependent 
on the precise specification of training, testing, and 
validation algorithms. According to Aprea [12] et al., 
ANN may be used to identify internal operating 
conditions and improve system performance. According 
to Gill et al. [13], artificial intelligence approaches may 
be used to determine system performance more precisely 
than conventional statistical methods. Increased use of 
hidden layers, according to Wang et al. [14], produces 
findings that are more precise. Kharwar and Verma [15] 
studied surface roughness (Ra) during the milling of 
Multiwall Carbon Nanotube reinforced polymer nano–
composites using ANN. The paper concludes that Vali–

dation through experimental and predicted values con–
firms the efficacy of the ANN model in optimizing mac–
hining processes for enhanced surface quality. Kharwar 
and Verma [16] by employing a hybrid approach 
combining Grey Relational Analysis (GRA) within an 
ANN framework based on the Taguchi method, research 
aims to achieve multi-criteria optimization in turning 
operations. The ANN, trained using the Levenberg-
Marquardt Back Propagation algorithm, success–fully 
predicted the optimal process parameters. 

 Thomas et al. [17] reports that two hidden layers of 
a neural network provide predictions that are more ac–
curate than those produced by a single layer. 

 According to Gill and Singh [18], the application of 
AI technologies like adaptive neuro-fuzzy inference 
systems and ANN has expanded recently. When results 
from the mathematical model and artificial intelligence 
technique were examined, it was observed that the latter 
provided results with a higher degree of accuracy and 
quicker forecast. 

Accurate air conditioning performance forecasting is 
crucial for advanced control and problem diagnostics. A 
long-memory recurrent network-based model for system 
performance prediction was proposed by Zhijie and Fu 
[19]. Researchers concluded that the suggested model 
can provide the desired result with reasonable accuracy. 
Using the DNN model, Kim et al. [20] were able to 
regulate the airflow of an air conditioner to increase its 
performance and energy efficiency. Lorenc et al. [21] 
used ANN model in the allocation of product. The paper 
demonstrated how employing multi-criterion clustering 
could boost order-picking productivity by using ANN. 
Vimal et al. [22] proposed an ANN model with drill 
diameter, spindle speed, and feed rate as input para–
meters while thrust force and torque as output para–
meters. Results obtained show ANN has very good 
agreement with experimental results.   

In order to capture the link between the interior air 
temperature and the occupants' thermal comfort, Jin et 
al. [23] suggested a DNN model and discovered that its 
mean average error is roughly 0.10C. Due to the com–
plexity of the central air conditioning energy efficiency 
forecasting problem, Song et al. [24] suggested using 
DNN. They observed a strong connection between ex–
pected and actual outcomes when using an enhanced 
LSTNet model to forecast the system's performance. 
Zhou et al. [25] contrasted the Long Short-Term Me–
mory (LSTM) model with the Moving Average model 
(MAPE) and the backpropagation (BP) neural network 
model and discovered that, when compared to MAPE 
and BP, LSTM is more reliable at predicting outcomes. 
Salman et al. [26] used ANN in predicting the wind 
speed. The paper concludes that LSTM may be used for 
short-term prediction of wind speed with training input 
parameters. Ramkumar et al. [27] introduce ANN as a 
promising alternative to analytical models for accurately 
predicting the bond strength of composite joints. ANN 
models are trained with segregated acoustic emission 
data based on failure mechanisms and load percentages. 
The paper concluded that ANN is more accurate in 
predicting the failure load.  

Mohandes et al. [28] used recurrent neural networks 
in speed prediction. And proposed model is effective in 
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wind speed predictions at different heights. Rehman et 
al. [29] investigate the challenges of predicting wind 
speed for wind power integration into the grid. By con–
sidering meteorological parameters like temperature and 
pressure, two nonlinear autoregressive neural network 
models are proposed for long-term wind speed pre–
diction. The paper proposes a neural network model for 
predicting wind speed.  

Recurrent neural networks (RNN) were used to 
construct the failure detection and isolation (FDI) met–
hodology developed by Hadi et al. [30] for HVAC 
systems. There are many benefits, such as the fact that 
FDI can isolate defects described in study work without 
the need for mechanistic models, plant fault histories, or 
a set of expert criteria. Koçak and Şiray [31] proposed 
that, modeling complicated real-world issues like func–
tion approximation, classification, pattern recognition, 
and forecasting, ANNs are a commonly used compu–
tational modeling technique. Du et al. [32] employed 
particle swarm optimization (PSO) to find the app–
ropriate number of hidden layer nodes and improve 
prediction model accuracy in DNN. 

The DNN is the primary architectural framework 
used in deep learning algorithms. Deep learning algo–
rithms utilize deep neural networks to automatically 
learn hierarchical representations of data for tasks. This 
architecture enables us to learn complex relationships. 
DNNs are a particular type of neural network; deep 
learning, on the other hand, is a more general field that 
has different methods for learning data representations. 
DNNs belong to the deep learning category. 

According to the literature analysis indicated above, 
advancement in computational capabilities leads to 
numerous novel techniques to analyze and forecast the 
different parameters of the AACS. Artificial Deep Neu–
ral Network has not been used for AACS with R134a 
refrigerant.  The objective of this paper is to present the 
use of DNN in predicting the parameters contributing to 
the performance of the air conditioning system. The 
experimental setup is prepared to analyze parameters. 
The DNN model is used to estimate the performance 
parameters of a vehicle's air conditioning, which include 
compressor work, Coefficient of performance (COP), 
and heat loss. Their projected values were compared to 
the actual experimental results.  
 
3. ARTIFICIAL DEEP NEURAL NETWORK 

The ANN is a modeling technique that has been 
encouraged by the biological nervous system of the 
brain. Unlike other machine learning models, ANN au–
tomatically discovers the intricate mathematical relati–
onship between independent and dependent vari–ables.  
Similar to the human brain, a neuron is the core pro–
cessing element of the ANN. Every neuron gets inputs 
and multiplies them with corresponding weights to 
determine the significance of each input. The higher the 
weight, the more significant the input for the prediction. 
The weighted input is added together to pro–duce the 
output. This is shown by the following formula: 

( )1
n

c ccz w i b== ∗ +∑    (1) 

where wc and ic are the weights and inputs to the 
neuron.  The term 'n' indicates the total number of inputs 
to the neuron. The term 'b' is called bias. It is used to 
express the displacement of a line along the x-axis. This 
formula identifies the linear relationship between 
independent and dependent variables. To learn the 
complex non-linear relationship, it undergoes the 
function called the activation function. Sigmoid, Tanh, 
ReLU, Leaky ReLU, and softmax are the various non-
linear activation functions. In conclusion, the output of 
the neuron is determined using the following formula: 

( )( )1
n

c cco f w i b== ∗ +∑   (2) 

where ‘o’ is the output of neuron while ‘f’ is the acti–
vation function. In general, the structure of an ANN 
model is made up of three core layers: an input, a 
hidden layer, and an output layer. Each neuron belongs 
to one of these three layers. Hasan Avci, et al. [33] 
mentioned that the ANN model's performance is inf–
luenced by the network's properties, like the count of 
hidden layers and the neurons. Fig. 1 depicts the arran–
gement of neurons in the layers for AACS. Inputs are 
involved in the first layer. The first layer consists of 
three neurons conforming to Compressor Speed, Air 
temperature at the Inlet of the Evaporator, and Refri–
gerant Flow Rate refereeing N, Ta.i.evap, and rm   res–
pectively. There is no connection between the neurons 
from the same layer. But, every neuron from the input is 
connected to every other neuron present in the next 
layer. The next layer is hidden. It is made up of 16 
neurons. These neurons are helpful for learning com–
plicated and essential features from input on their own. 
These are referred to as hidden neurons since they 
cannot be interpreted from the outside. Again neurons 
from the hidden layer are connected to every other 
neuron from the next hidden layer. In many cases, nu–
merous hidden layers are added to learn intricate non-
linear relationship between dependent and independent 
variables.  

 
Figure 1. Arrangement of Neurons in Deep Neural Network 

Initial hidden layers learn simple features from the 
input while later hidden layers learn the complex fea–
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tures by combining simple features learned from pre–
vious layers. If the number of hidden layers is two or 
greater than two, then such neural networks are called 
DNN. It has more learning capability than shallow 
neural networks having only one hidden layer. At the 
end, neurons of the final hidden layers are connected to 
the output layer, which is at last of ANN architecture. 
The output layer consists of three neurons corres–
ponding to Compressor Work, Coefficient of Perfor–
mance (COP), and Heat Loss referring to Wcomp, COP 
and Qloss respectively.  

Learning mechanism in neural network refers to the 
process of identifying correct weights and bias so that 
the difference between predicted and actual output is as 
small as possible. The loss function is a measure of the 
difference between predicted and actual outputs. MSE 
and MAE are the famous loss functions utilized to mea–
sure the difference between real-valued predicted and 
actual output. The optimization algorithm plays an 
important role in guiding neural networks to update the 
weights. It takes partial derivation of the loss function to 
decide the new weights and bias. It is calculated by the 
following formula. 

new old
L

W W
W

α ∂
= − ∗

∂
   (3) 

where Wnew and Wold are new and old weights before and 
after weight modification, while α refers to the learning 
rate. It decides how much magnitude we have to con–
sider from the partial derivation of the loss function 

with respect to weight represented by L
W
∂
∂

. The pro–

posed model is developed with Tensorflow 2.0 in Jupy–
ter Notebook with Anaconda Package Manager. 
 
4. NEURAL NETWORK VALIDATION 
 
To assess the DNN model, statistical investigation is 
employed, specifically utilizing the correlation coef–
ficient (R) to understand the relationship and depen–
dency between different variables. RMSE and MAE are 
used to compare the predicted outputs of the DNN 
model to the actual experimental results. 

The value of R [where, -1 ≤ R ≤ 1] is employed to 
quantify the degree of correlation between the anti–
cipated outputs and the experimental output. The R-va–
lue tending to 1 indicates a strong positive relation bet–
ween the x and y data sets. Conversely, a value nearer to 
-1 suggests a strong negative linear relation between 
data. It indicates a weak or no relationship between the 
data sets for value close to zero, irrespective of sign. 

The average magnitude of the error is given by 
RMSE.  The square root of the summation of the square 
of the difference between predicted and actual obser–
vation divided by a number of observations shows 
RMSE. As follows:  

( )( )21
1 n p

j jjRMSE y y
n == −∑   (4) 

where yi are actual values while yp
i are predicted values 

and n represents the total number of observations. 

Average magnitude errors in prediction are given by 
MAE irrespective of their direction. It is calculated 
using the following formula. 

( )21
1 n p

j iiMAE y y
n == −∑   (5) 

where yi shows actual values and yp
i shows predicted 

values, and n represents the total number of obser–
vations. 

 
5. DESCRIPTION OF EXPERIMENTAL SETUP 

 
The AACS experimental rig developed for the experi–
mentation purpose is shown in the schematic diagram 
Fig. 2. It is divided into two sections: a vapor comp–
ression refrigeration unit which consists of a swash plate 
compressor, microchannel evaporator along with closed 
air duct, microchannel condenser, expansion valve, in–
sulated pipes which connect the component to pass 
refrigerant as shown in this diagram. The ducts were 
planned and built in accordance with industry standards. 
The AACS was built utilizing authentic components 
used for AACS which uses R-134a refrigerant. The 
evaporator section's air duct has a 500 mm length, with 
a closed loop rectangular cross-section. Thick wool 
material is utilized as insulating material for the duct 
walls between the evaporator coil's ends. A centrifugal 
fan with a variable speed arrangement was used to drive 
air through the duct. The heating load to the evaporator 
coil is adjusted by using a 2 kW electrical power heater. 
Air temperature and humidity is maintained by the 
heating and humidification sections at the evaporator 
coil's inputs.   

Two kW electrical powered heater employed at the 
condenser coil's entrance to maintain required ambient 
temperature. Two pt100 resistance temperature detector 
(RTD) sensors were used to gauge the air temperature 
upstream and downstream of the evaporator coil. Anot–
her RTD sensor with the same specification is used to 
measure the upstream temperature of the condenser coil. 
Two air velocity transducers were used to measure the 
speed of air flowing through the evaporator and con–
denser coils. The compressor speed was controlled by a 
frequency inverter. The temperature of the refrigerant 
was measured at various places in the vapor-comp–
ression refrigeration circuit using Type-K thermo–
couples inserted into copper tubing. The pressure at the 
suction and discharge parts of the compressor has been 
checked with a Bourdon tube pressure gauge. The 
suction pressure corresponds to evaporating pressure 
while discharge pressures is corresponding to conden–
sing pressures since we presupposed no pressure loss in 
the pipes. A flow meter was fitted at the condenser's 
output to monitor the flow of refrigerant. To ensure that 
the refrigerant is always sub-cooled, a transparent glass 
tube was mounted. The AACS was run in the expe–
riments until it reached a steady state. During trials, 4 
operating parameters were adjusted, each within its own 
range. Velocity of the condenser air maintained at 
around 1.6 m /s throughout the experiment. 

The measuring tools used in the experiments for the 
various properties are displayed in Table 1. The cor–
responding equipment's range and uncertainty are also 
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shown in the table. The equipment's uncertainty is wit–
hin allowable bounds.  

 

 
Figure 2. Schematic Diagram Experimental Arrangement 
Table 1.  Measurement Instruments, Range, and Uncer–
tainty  

Measured 
variable Instrument Range Uncert-

ainty 
Temperature K type -270to 1260°C ±2°C 
Pressure Burdon Gauge 0-20 bar ±1% 
Air Velocity Flow meter 0-25 m/s -- 
Mass flow rate Rotameter 0-100 LPH ±1.5% 
Compressor 
speed 

Digital 
Tachometer 0-20,000RPM ±2% 

Current Ammeter 0-20A ±1% 
 
6. PERFORMANCE ANALYSIS OF AACS 
 
The components of AACS as mentioned in the setup 
description have four components an Evaporator, con–
denser, compressor, and expansion valve. At all times 
these components are running in steady state mode. In 
contrast to heat and work exchanges, the kinetic and 
potential energy changes of the refrigerant R134a are 
disregarded. For each component considering the steady 
state equations steady flow equations are used and heat 
transfer from each component are evaluated as per 
following equations. For the condenser, it is important 
to consider phases like heat transfer in the superheated 
region (Qcond,sh), two-phase flow region (Qcond,tp), 
and subcooled region (Qcond,sh) while in the evapo–
rator heat transfer in superheated (Qevp,sh) flow and 
two-phase (Qevp, tp) flow are considered.  

( ), , ,cond tubes cond sh cond sh cond scQ N Q Q Q= + +∑ ∑ ∑  (6) 

, ,evap evp tp evp shQ Q Q= +∑ ∑   (7) 

( )comp r out in lossW m h h Q= ⋅ − +   (8) 

The mr shows the mass flow rate of refrigerant in a 
vapor compression refrigeration system, and conside–
ring the enthalpies (hout, hin) and efficiency we can 
evaluate the work done by the compressor as given in 
the equation. The performance analysis of the ACCS 
can be determined with the help of the COP of the 
system. In this research work COP of the system depen–
ding upon the above equation considered a performance 
parameter. For various speeds of the compressor, we 
have different mass flow rates and heat loss for the 
compressor. This variation also leads to differences in 
heat transfer in the condenser and evaporator. So we can 
vary the speed and these leads to variation of COP of 
the system. This variation is considered an operating 
parameter in further study.  

 
7. DNN MODEL OF THE AACS  
 
DNN model is used in the experimentation of AACS as 
a real value prediction model. Data acquisition, desig–
ning DNN, construction of DNN and training along 
with hyperparameter tuning for getting better results 
Figure 3 shows a schematic structure of the proposed 
DNN model with AACS. Model uses three input vari–
ables as x and uses AACS-generated y as an actual out–
put. Deep learning model trains of these x and y pairs by 
learning hidden representations between them. The 
output yP is used with an error function to calculate the 
difference e with the actual output y.  

 
Figure 3. Schematic Structure of Proposed DNN Model with 
AACS 

Typically, a DNN contains one input, two or more 
hidden, and one output layer. Shallow neural networks 
consist of one input layer, one hidden layer, and one 
output layer. Such neural networks have limited capa–
city to learn the complex relationship between input and 
output variables. The proposed deep learning model 
exhibits more power to learn complex relationship bet–
ween input and output variable. Its first hidden layer 
learns basic features of input while the second hidden 
layer learns complex features to provide better predic–
tion results. 
 
8. PARAMETRIC STUDY ON THE DNN MODEL 
 
In every neural network, a few values need to be set 
ahead of actual learning or training. For example, count 
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of neurons in layers and selection of activation function. 
These values are called hyperparameters. We can set the 
values of our choice for testing. But this set of values 
affects the accuracy. So, it is important to identify the 
correct set of hyper-parameters to improve the accuracy 
of the network. This section describes the effect of 
hyper-parameters over accuracy. 

For the experimentation, 90% data is used for 
training while 10% data is used for validation. From the 
total 70 samples, 63 samples are used for training while 
the remaining 7 samples are used for validation. Every 
training sample holds the Compressor Speed, Air tem–
perature at the Inlet of the Evaporator, and Refrigerant 
Flow Rate refereeing as input while Compressor Work, 
Coefficient of Performance (COP), and Heat Loss as 
actual output. The model is trained to learn the rela–
tionship between inputs and actual outputs. In valida–
tion, unseen 10% data is used to understand how well 
our model learned the relationship between inputs and 
output. Predicted values of the validation dataset are 
checked with actual output values of the validation 
dataset to check the learning.  

The model generates a continuous range of values 
instead of discrete categories corresponding to the 
compressor work, COP, and heat loss. The efficiency of 
AACS is measured by these outcomes, hence selected 
as output parameters.  To evaluate the discrepancy bet–
ween the predicted and actual values, the system 
employs RMSE and MAE. RMSE measures the square 
root of the average of the squared differences between 
the predicted and actual values. MAE measures the ave–
rage magnitude of the errors between predicted values 
and actual values without considering their direction. 
This means it looks at the absolute differences between 
these values, which makes it straightforward to inter–
pret. 
 
8.1 DNN model with different numbers of neurons 
 
While developing DNN, the number of neurons in each 
layer is a critical aspect in defining the network's perf–
ormance and capabilities. The number of neurons influ–
ences the network's capacity to learn complex patterns 
and make accurate predictions. It is useful for handling 
complex relationship between input and output along 
with overfitting and underfitting. In practice, the opti–
mal number of neurons is determined through 
experimentation and iterative tuning. Table 2 shows the 
error from the system with the change in the count of 
neurons.  
Table 2. Error from the System with Change in Number of 
Neurons  

# Neurons in 
Hidden Layer 1 

# Neurons in Hidden Layer 2 
16 32 64 

16 5 x 10-3 4 x 10-3 3 x 10-3 
32 4 x 10-3 3 x 10-3 2 x 10-3 
64 3 x 10-3 3 x 10-3 3 x 10-3 

 
From Table 2 it is observed that results are more 

accurate corresponding to 32 neurons in the first hidden 
layer while 64 neurons are the second hidden layer. 
Table 3 indicates the standard deviation for the trained 
model. It indicates the model stability with the unseen 

data. Less standard deviation indicates the model is 
more stable to the unseen data. The same 32 and 64-
neuron combination shows better stability with the 
trained model. 
Table 3. Standard Deviation for the Trained Model 

# Neurons in 
Hidden Layer 1 

# Neurons in Hidden Layer 2 
16 32 64 

16 2 x 10-3 3 x 10-3 3 x 10-3 
32 1 x 10-3 3 x 10-3 1 x 10-3 
64 2 x 10-3 2 x 10-3 2 x 10-3 

 
9. RESULT ANALYSIS AND DISCUSSION 
 
From the parametric study of neural network, it is 
observed that the DNN with two hidden layers with 32 
and 64 neurons respectively provides better result. The 
same model architecture is used to plot the error curve 
for RMS and MAE with 200 epochs. The small number 
of epochs results in underfitting while the huge number 
results in overfitting. Therefore epochs are set to 200. 
Fig. 4 represents these errors vs epochs. From the figure 
it is observed that RMS and MAE decrease drastically 
after a few epochs and generate more stable relati–
onship. 

 
Figure 4. Variation of RMSE and MAE with Respect to 
Epochs 

Figures 5 (a), 5 (b) and 5 (c) represent the predicted 
and actual values for various samples for compressed 
work, COP, and heat loss respectively. Every graph 
shows that predicted and actual values are close to each 
other. These graphs indicate that predicted and actual 
value lines follow the same direction and structure. 

 
(a) 
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(b) 

 
(c) 

Figure 5. Actual and Predicted (a) Compressor Work  (b) 
COP (c) Heat Loss with Respect to Number of Samples 

Several statistical measures, such as R, MSE, and 
RMSE have been chosen to evaluate the DNN model's 
performance. Figure 6 (a) shows a plot of predicted 
COP versus experimental COP. The DNN produces R = 
0.9748, MSE of 1.8688×10-3 and RMSE of 0.66% in 
this instance. The findings obtained by DNN prediction 
exhibit very good accuracy with the obtained experi–
mental results, as indicated by the R, MSE, and RMSE.  

 Figure 6 (b) shows predicted compressor work 
compared with actual compressor work. The plot dis–
plays the correlation coefficient, which indicates a po–
sitive connection between the actual and expected 
values at 0.9867. MSE 0.19% and RMSE value is 
2.8157×10-3. It concludes that when compared to expe–
rimental findings, the DNN model displays precise 
results. 

Figure 6 (c) indicates variation of DNN predicted 
result with respect to actual experimental results. The 
results obtained indicate a 0.9999 correlation coeffi–
cient, 0.003% RMSE, and 1.3539×10-3 MSE. Which 
shows good accuracy with DNN predicted results and 
experimental results. 

 
   (a) 

 
(b) 

 

 (c) 
Figure 6. (a) Actual COP versus Predicted COP  (b) Actual 
Compressor Work versus Predicted Compressor work     
(c) Actual Heat Loss versus Predicted Heat Loss 
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10. CONCLUSION  
 
The DNN model is used to predict the performance of 
AACS. Out of the three layers of DNN, the first one is 
the input layer which consists of three neurons corres–
ponding to inputs. The second layer is the hidden layer. 
Neurons from the hidden layer contribute to the learning 
ability of the complex non-linear relationship between 
input and output. The output layer with 3 neurons is the 
third layer. The performance of DNN is accessed by 
using R, RMSE, and MSE. Based on the results obta–
ined specified DNN model can be effec–tively used in 
predicting the performance of the AACS. The corre–
lation coefficient between predicted and actual experi–
mented values for COP, compressor work, and actual 
heat loss are 0.9748, 0.9867, and 0.9999 respectively. 
All of the aforementioned parameters' R values were 
discovered to be extremely near to one, sho–wing that 
the DNN model can accurately predict the performance 
characteristics of the AACS. The values of RMSE and 
MSE are also found to be quite low, which supports the 
assertion that the findings produced have strong 
agreement with the outcomes of the experiments and 
may be used successfully for performance predic–tion.  
 The DNN model developed, significantly enhances 
the understanding of complex relationships between de–
pendent and independent variables, leading to opti–mized 
designs. These models accelerate the design pro–cess and 
minimize the need for physical prototypes. DNN model 
can be used for prediction as well as validation of the 
results accurately. Automotive envi–ronments are dyna–
mic, with factors such as weather conditions, driving pat–
terns, and vehicle load constantly changing. DNNs can 
adapt to these evolving conditions by continuously 
learning from new data. This adap–tability allows DNN-
based prediction models to main–tain accuracy over time, 
even as operating conditions fluctuate. 

Deep learning's adaptability allows for tailored solu–
tions and continuous learning from new data. Integ–
ration with IoT and big data facilitates real-time moni–
toring and analysis, turning vast datasets into actionable 
insights, ultimately leading to more efficient, cost-
effective, and innovative engineering outcomes. 
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NOMENCLATURE 

wc Weights  
ic Inputs to Neuron  
b Bias 
o Output of the Neuron  
N Compressor Speed 
Ta.i.evap Air inlet Temperature at evaporator inlet  
rm  The mass flow rate of refrigerant  

Wcomp Compressor work  

Qloss Heat Loss 

Wnew New weights  

Wold Old weights  

L Loss function 

yi Actual Value  

yp
i Predicted Value  

n Total Number of Observations  

Q Heat transfer  

h Enthalpy  

e error 

Greek symbols 

α Learning rate  

Superscripts 

cond Condenser  
evp Evaporator  
sh Super-heated  
tp Two-phase  
sc Subcooled  
out Outlet  
in Inlet  

ABBREVIATIONS 

AACS Automotive Air Conditioning System 
ANN Artificial Neural Network 
DNN Deep Neural Networks 
AI Artificial Intelligence 
LSTM Long Short-Term Memory 
MAPE Moving Average model 
BP Back Propagation 
RNN Recurrent Neural Networks 
FDI Failure Detection and Isolation 
HVAC Heating, Ventilation, Air Conditioning 
PSO Particle Swarm Optimization 
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COP Coefficient of Performance 
ReLU Rectified Linear Unit 
MSE Mean Square Error 
RMSE Root Mean Square Error 
MAE Mean Absolute Error 
RTD Resistance Temperature Detector 
R correlation coefficient 
 
 
ПРЕДВИЂАЊЕ ПЕРФОРМАНСИ СИСТЕМА 
ЗА КЛИМАТИЗАЦИЈУ АУТОМОБИЛА КРОЗ 

ДУБОКО УЧЕЊЕ 
 

П.М. Гавали, С.Д. Јадав 
 
Аутомобилски систем климатизације (ААЦС) укљу–
чује фазну промену расхладног средства, како би се 
обезбедило удобно окружење у кабини возила. Про–

мена фазе је регулисана многим сложеним једна–
чинама. Због тога је потребна техника која може да 
потврди резултате и предвиди перформансе система 
да би се избегла заморна израчунавања. Дубоке 
неуронске мреже (ДНН) су боље у учењу сложених 
нелинеарних односа између метрика учинка. Експе–
риментални подаци се користе за обуку наведеног 
ДНН модела. Брзина компресора, температура ваз–
духа на улазу у испаривач и брзина протока расх–
ладног средства се користе као улаз, док су коефи–
цијент перформанси, рад компресора и губитак топ–
лоте коришћени као излазни параметри за обуку мо–
дела. Предвиђени резултати се пореде коришћењем 
статистичких мера као што су средња квадратна 
грешка, средња квадратна грешка као и коефицијент 
корелације. На основу добијених резултата, наве–
дени ДНН модел се може ефикасно корис–тити у 
предвиђању и валидацији перформанси ААЦС-а. 

 
 


