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This paper is concerned with the compressible fluid flow, i.e. the 
dissociated gas in the boundary layer. It defines in a logical way the 
transformations of the longitudinal and transversal variables of the 
boundary layer, which are already known and found in the literature. 
These transformations are used as preceding ones to General Similarity 
Method for the solution of compressible boundary layer equations. 
This paper shows that these transformations can be defined from the 
condition of the identity of the form of the corresponding values and 
boundary layer equations of compressible and incompressible fluid. 
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1. INTRODUCTION 
 
 While solving different problems of fluid flow in the 
boundary layer, investigators, as known [1], use 
different transformations of variables. Instead of the 
physical coordinates x  and y  new variables are 
introduced in the boundary layer theory, usually in the 
form of the transformations )(xξ=ξ  and ( , )x yη = η . 
Firstly, special transformations are introduced in the 
boundary layer theory by means of which, using the 
stream function, the governing partial differential 
equations are brought down to simple differential 
equations. This way we come to the so-called similar or 
″self-similar″ solutions of the boundary layer equations 
[2], which are relatively less important for engineering 
practice. 
 With the progress of science and engineering, 
methods for solution of more and more complicated 
problems of boundary layer fluid flow were developed. 
Finally, after the so-called parametric methods [2], the 
General Similarity Method was developed and it was 
used to solve very complicated problems of 
compressible fluid flow [3]. This method was 
successfully used for the solution of MHD boundary 
layer flow [4] as well as for the dissociated and ionized 
gas boundary layer flow [5].  
 With the application of General Similarity Method 
to the case of the compressible fluid flow, besides 
general similarity transformations, we use transforma-
tions of different forms [2, 3] as previous. First, we use 
them to transform the starting boundary layer equations, 

then we use general similarity transformations which 
enable introduction of the corresponding set of 
similarity parameters of the considered problem. In the 
literature, concerning this question [6, 7] newly 
introduced variables in the form of transformations are 
used as the preceding ones for the solution of the 
problem of dissociated or ionized gas flow 
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 Often, with the application of the General Similarity 
Method, there are questions such as: ″Why do these 
transformations [1] have these forms?″, and ″What is 
the purpose of introduction of these variables?″ The 
main goal of the analysis here undertaken is to answer 
these questions. 
 
2. DEFINING OF THE NEW VARIABLES 
 
 In order to answer the questions we start from the 
continuity equation and the corresponding dynamic 
equation of the compressible boundary layer, i.e. 
dissociated gas [6, 7]. These equations with the corres-
ponding boundary conditions are: 
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With the equations of the system (2), the usual notations 
in the theory of 2-D laminar boundary layer [8] are used 
for different physical values. Here ),( yxu  is the 
longitudinal projection of the velocity in the boundary 
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layer, ( , )x yv  is the transversal projection, ρ  is the 
density of the compressible fluid, and µ  is the dynamic 
viscosity. In the equations (2) and in the boundary 
conditions, the subscript ″e″ stands for the physical 
quantities at the outer edge of the boundary layer, while 
the subscript ″w″ represents the values of the physical 
values at the wall of the body within the fluid. In this 
analysis we observe the gas flow along the porous wall 
of the body within the fluid. That is why )(xvw  stands 
for the given velocity with which the dissociated gas 
flows perpendicularly through the solid porous wall. As 
known, this velocity can be 0w >v  at injection or 

0w <v  at ejection of the gas.  

 If, by the usual procedure, the continuity equation is 
multiplied with )(xue , we obtain the equation 

d
( ) ( )
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v  . 

The dynamic equation of the starting system (2) can be 
written in the following form 
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Subtracting the previous equations we get  
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If we multiply the obtained equation with dy  and 
integrate each term with respect to the variable y in the 
range from 0 to ∞ , i.e. transversally to the boundary 
layer, we get 
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 Taking the boundary conditions into consideration 
as well as the rules for changing the order of operations 
of differentiation and integration, the previous equation 
can be written as 
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The last term of  Eq. (4) represents the shear stress wτ  
at the wall of the body within the fluid, i.e. 

4 0( )w y
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 .  

 In order to give an answer to the asked questions, we 
will consider certain terms of Eq. (4), bearing in mind 
that ( , )u u x y= , ( , )x yρ = ρ  and )(xuu ee = . The first 
term of Eq. (4) can be written as: 
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From the boundary layer theory of incompressible fluid 
[2] it is known that the momentum thickness )(x∗∗δ  as 

well as the displacement thickness )(x∗δ  are 
determined with the following expressions in the form 
of integrals: 
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These thicknesses refer to the incompressible fluid 
flow, for which the density const .ρ =  

 Note that the integral in the expression for 1I , 
which regards the compressible fluid, i.e. the 
dissociated gas, is similar in the form to the integral (6) 
which defines the momentum thickness of an 
incompressible fluid. Since the density of compressible 
fluid is the function of two variables, i.e. ( , )x yρ = ρ ; 
the density ρ  can be eliminated from sub-integral 
function of the integral 1I  with a suitable trans-
formation of variables, so that two integrals can be 
made formally identical. That is why it is necessary to 
transform the physical coordinate y  into a new 
transversal variable for all values of the longitudinal 
variable x  in the boundary layer. If we compare 1I  
and ∗∗δ  we can conclude that the necessary 
transformation of the variables must satisfy the relation 

0( , )d dx y y zρ = ρ .                  (7) 
In the relation (7), z  denotes the new transversal 
variable, while 0 const .ρ =  denotes an arbitrary known 
value of the compressible fluid density. Since 

0 const .ρ = , it follows from (7) that the newly 
introduced transversal variable z  must be a function of 
both x  and y , i.e. ( , )z z x y= . The solution of the 
differential equation (7), i.e. transformation of the 
variables in the form of this relation should ensure that 
in any cross-section of the boundary layer, i.e. for all 
the values of the longitudinal variable x : 

0d dz y = ρ ρ , or to be more precise 

0

z
y
∂ ρ

=
∂ ρ

 .              (8) 

Since limit values in the expressions for the integrals 1I  

and ∗∗δ  are the same, it is necessary that the physical 
transversal variable y  and the newly introduced 
transversal variable ( , )z x y  should have the same 
values at the edges of the boundary layer. 
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  With these necessary conditions, 1I  can be brought 
to this form 
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where ∗∗∆  stands for the integral 
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It is clear that the expressions for the value ∗∗∆  and for 
the momentum thickness ∗∗δ  are of the same form. 
That is why, by analogy with ∗∗δ , the value ∗∗∆  is, in 
the literature [6], called the conditional displacement 
thickness. 
 According to the given relations and conditions of 
″norm setting″, the term 3I  of the equation (4) can be 
transformed as 
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Because of the formal similarity of the expression (10) 
for the value ∗∆  with the expression (6), which defines 
the displacement thickness of the incompressible fluid 
∗δ , this value is, in the literature, called the conditional 

displacement thickness. 
 Based on the analysis undertaken here, and from the 
condition of the formal identity of the considered 
integrals, it follows, according to (8), that the 
transformation of the transversal variable in the form of 
the expression 
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satisfies all in advance given conditions of the norm-
setting. 
 By means of the newly introduced transversal 
variable (11), Eq. (4) of compressible fluid transforms 
into  
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and after differentiation we come to the nondimensional 
equation which is 
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 This way the obtained momentum equation of the 
dissociated gas (12) has almost identical form with the 
momentum equation of the incompressible fluid for the 
case of the flow along the porous wall of the body 
within the fluid [2, 9]. Besides, for the case 

0 const .w eρ = ρ = ρ = ρ = , the newly introduced 
transversal variable comes down to ( , )z x y y= , the 
conditional thicknesses of the boundary layer reduce to 

∗∗∗∗ δ=∆ , ∗∗ δ=∆ , while the momentum equation (12) 
transforms to the momentum equation of the 
incompressible fluid for the corresponding flow 
problem. 
 With the newly introduced transversal variable 

( , )z x y , the shear stress on the wall of the body within 
the fluid can be written in the form of the expression 
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where the nondimensional friction function ζ  is 
defined as 
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Substituting the expression (13) into the momentum 
equation (12) we obtain Eq. 
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 After some transformations the previous equation 
can be brought to the equation of the form 
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and as such it is usually stated in the literature for 
different cases of the fluid flow. In Eq. (15) the 
characteristic function dpF  of the dissociated gas 
boundary layer is determined with the expression 
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 The corresponding momentum equation of 
incompressible fluid [2] is of the same form as Eq. (15). 
However, the characteristic function of the boundary 
layer pF  is, in that case, determined with the 
expression 

[ ] λ−+−ζ= 2)2(2 tttp fHF  ,      (17) 

where for incompressible fluid, we use the subscript t  
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In the given expressions λ  is the porosity parameter. 
For the case of a non-porous wall of the body within the 
fluid, the porosity parameter equals zero, because 

( ) 0 .w x =v  

 Because of the methodology of the formal identity 
of the corresponding values with compressible and 
incompressible fluid, a request of formal identity of the 
characteristic functions dpF  and pF  can be made. 

The ″coefficient″ next to the nondimensional function ζ 
in the relation (16) indicates that a new longitudinal 
variable of the boundary layer should be introduced 
instead of the physical coordinate x . The new longit-
udinal variable is, for now, defined with the general 
relation 
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The momentum equation (15) is, in this case,  
transformed into the equation 
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in which the characteristic function dpF  is determined 
with the expression 
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Having this form of the expression dpF , it is obvious 
that with the relation 
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In the expression (20) for the newly introduced 
longitudinal variable ,)(xs  the values wρ  and wµ  
stand for the known distributions of the density and 
dynamic viscosity at the wall of the body within the 
fluid. 
 If, with the compressible fluid flow, we introduce 
the porosity parameter as  

0

0
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w
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∗∗∆ µ
Λ = −

ν µ
v

 ,         (21) 

then for the characteristic function dpF  of the boundary 
layer of the dissociated gas we get the expression which 
takes its final form as 

[ ]2 (2 ) 2dpF H f= ζ − + − Λ .                (22) 

The obtained expression (22) for the characteristic 
function dpF  of the dissociated gas boundary layer is, 
with the considered conditions, of the same form as the 
corresponding expression (17) for the characteristic 
function pF  of incompressible fluid. For the case of the 
boundary layer flow along the non-porous wall 
( 0w =v ) the expressions for the both characteristic 
functions dpF  and pF  formally reduce to the familiar 
expression [2] characteristic for the incompressible 
fluid flow  

[ ]2 (2 )F H f= ζ − +  . 

 

3. CONCLUDING DISCUSSION 
 

 Therefore, by a detailed analysis undertaken here, 
we present a natural procedure to obtain the form of the 
transformation of the transversal and longitudinal 
variables of the boundary layer. At the same time, the 
answer to the question concerned with the purpose of 
the newly introduced variables )(xs  and ( , )z x y  was 
given. By introducing these variables, we achieve that 
the boundary layer expressions of the compressible 
fluid (dissociated gas) for the conditional thicknesses, 
for the momentum equation and for the characteristic 
function dpF  have the same form as the corresponding 
expressions for the case of the incompressible flow. In 
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addition, for the conditions of isothermal liquid flow 
across the porous wall ( const .ρ = , const.µ = ), these 
values of the dissociated gas come down to the 
corresponding values of incompressible fluid. In this 
case the porosity parameter of the dissociated gas )(sΛ  
transforms to the porosity parameter of incompressible 
fluid )(xλ . Consequently the corresponding sets of 
parameters, upon which the General Similarity Method 
is based [5], are determined with the formally identical 
formulas [2]. This way the application and control of 
obtaining so-called generalized equations with the 
General Similarity Method is much easier for different 
cases of the compressible fluid flow in the boundary 
layer.  
 Moreover, the transformations of the variables (11) 
and (20), i.e. transformations (1), were known in the 
literature as Dorodnicin’s transformations modified by 
Lees L. They were particularly used for investigation of 
the dissociated and ionized gas flow in the boundary 
layer [6, 7].  Since this paper shows a logical procedure 
to obtain them and pinpoints the benefit of their usage, 
it is important, first of all, from a methodological point 
of view.  
 At the end of this analysis, it should be once more 
stated that the introduction of the new variables )(xs  
and ( , )z x y  in the form of the transformations (20) and 
(11) was determined  based on the condition of the 
formal identity of the momentum equations and the 
characteristic functions with compressible and incom-
pressible fluid. 
 Thus defined transformations of the variables should 
be applied to the dynamic equation of the system (2). 
Here, as with other fluid flow problems, the stream 
function ( , )s zψ  is introduced. This function is intro-
duced in accordance with 

u
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which is based on the momentum equation of the 
considered problem of the compressible fluid flow. 
 After the transformation of the variables and 
substituting (23) the starting dynamic equation of the 
system (2) becomes 
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The nondimensional function Q in the obtained 
equation is determined with the expression 

w w
Q ρ µ
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Obviously, 1=Q  for ,0=z  and 
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for .∞→z  If the obtained Eq. (24) is compared to the 
corresponding known equation for the case of the 
incompressible fluid flow [2, 9] expressed by means of 
the stream function ( , )x yψ , 
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e
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u
u

y x y x xy y
∂ψ ∂ ψ ∂ψ ∂ ψ ∂ ψ

− = + ν
∂ ∂ ∂ ∂ ∂ ∂

 ,        (25) 

it can be seen that these two equations are almost of the 
same form. To be more precise, the left-hand sides of 
Eqs. (24) and (25) have the same form. The right-hand 
sides do not. However, in the case of the isothermal 
flow of incompressible fluid ( const .ρ = , const.µ = ),  
the function Q becomes equal to 1, while Eq. (24) 
basically transforms to the corresponding Eq. (25) of 
the incompressible fluid. Under these conditions these 
two equations are identical. 
 Therefore, by application of the new variables )(xs  
and ( , )z x y  in the form of the transformations (1), the 
dynamic boundary layer equation of compressible fluid 
is brought to almost (i.e. partially) identical form as the 
corresponding boundary layer equation of incompress-
ible fluid. 
 Note that, under the same conditions [2], by means 
of Stewartson’s variables, the dynamic equation of the 
system (2) can be brought to the completely same form 
as the corresponding equation of incompressible fluid. 
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O TRANSFORMACIJAMA 
PROMENQIVIH KOD RE[AVAWA 
JEDNA^INA GRANI^NOG SLOJA 

STI[QIVOG FLUIDA 
 

Branko R. Obrovi}, Slobodan R. Savi} 
 

 Ovaj rad se odnosi na strujawe sti{qivog 
fluida, odnosno disociranog gasa u grani~nom 
sloju. U radu su na jedan logi~ni na~in defini-
sane transformacije podu`ne i popre~ne pro-
menqive grani~nog sloja, koje su ve} od ranije 
poznate u literaturi. Pomenute transforma-
cije se koriste kao prethodne kod primene 
Metode uop{tene sli~nosti za re{avawe 
jedna~ina grani~nog sloja sti{qivog fluida. 

 U radu je pokazano da se ove transformacije 
mogu definisati iz uslova istovetnosti oblika 
odgovaraju}ih veli~ina i jedna~ina grani~nog 
sloja sti{qivog i nesti{qivog fluida.   
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