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Boundary Layer Equations

This paper is concerned with the compressible fluid flow, i.e. the
dissociated gas in the boundary layer. It defines in a logical way the
transformations of the longitudinal and transversal variables of the
boundary layer, which are already known and found in the literature.

These transformations are used as preceding ones to General Similarity
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Method for the solution of compressible boundary layer equations.

This paper shows that these transformations can be defined from the

condition of the identity of the form of the corresponding values and
boundary layer equations of compressible and incompressible fluid.
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1. INTRODUCTION

While solving different problems of fluid flow in the
boundary layer, investigators, as known [l], use
different transformations of variables. Instead of the
physical coordinates x and y new variables are

introduced in the boundary layer theory, usually in the
form of the transformations & =§(x) and n=mn(x,y).

Firstly, special transformations are introduced in the
boundary layer theory by means of which, using the
stream function, the governing partial differential
equations are brought down to simple differential
equations. This way we come to the so-called similar or
"self-similar” solutions of the boundary layer equations
[2], which are relatively less important for engineering
practice.

With the progress of science and engineering,
methods for solution of more and more complicated
problems of boundary layer fluid flow were developed.
Finally, after the so-called parametric methods [2], the
General Similarity Method was developed and it was
used to solve very complicated problems of
compressible fluid flow [3]. This method was
successfully used for the solution of MHD boundary
layer flow [4] as well as for the dissociated and ionized
gas boundary layer flow [5].

With the application of General Similarity Method
to the case of the compressible fluid flow, besides
general similarity transformations, we use transforma-
tions of different forms [2, 3] as previous. First, we use
them to transform the starting boundary layer equations,
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then we use general similarity transformations which
enable introduction of the corresponding set of
similarity parameters of the considered problem. In the
literature, concerning this question [6, 7] newly
introduced variables in the form of transformations are
used as the preceding ones for the solution of the
problem of dissociated or ionized gas flow
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Often, with the application of the General Similarity
Method, there are questions such as: "Why do these
transformations [1] have these forms?”, and "What is
the purpose of introduction of these variables?” The
main goal of the analysis here undertaken is to answer
these questions.

2. DEFINING OF THE NEW VARIABLES

In order to answer the questions we start from the
continuity equation and the corresponding dynamic
equation of the compressible boundary layer, i.e.
dissociated gas [6, 7]. These equations with the corres-
ponding boundary conditions are:

0 0
— +—(pv)=0,
ax(pu) ay(p)

ou Ou du, 0,6 ou
U——+pv—=0p,U +—Wp—), 2
PUZTPUG, TPty ay(”ay) @
y=0: u=0, v="0,,(x),
y — oo: U —>u,(x).

With the equations of the system (2), the usual notations
in the theory of 2-D laminar boundary layer [8] are used
for different physical values. Here u(x, y) is the

longitudinal projection of the velocity in the boundary

FME Transactions (2004) 32, 19-24 19



layer, v(x,y) is the transversal projection, p is the
density of the compressible fluid, and p is the dynamic
viscosity. In the equations (2) and in the boundary
conditions, the subscript "e” stands for the physical
quantities at the outer edge of the boundary layer, while
the subscript "w" represents the values of the physical
values at the wall of the body within the fluid. In this
analysis we observe the gas flow along the porous wall
of the body within the fluid. That is why v,,(x) stands
for the given velocity with which the dissociated gas
flows perpendicularly through the solid porous wall. As
known, this velocity can be v, >0 at injection or

v,, <0 at ejection of the gas.

If, by the usual procedure, the continuity equation is
multiplied with u,(x) , we obtain the equation

u@
dx

a%(puue)+%(pvu

The dynamic equation of the starting system (2) can be
written in the following form

0 0
—(puu)+—(pou)=pu,—+—H—
ax(p )ay(P )peel 6( )
Subtracting the previous equations we get

0 0
a(puue —puu)+5(pvu6 —pou)=

w &)

If we multiply the obtained equation with dy and

integrate each term with respect to the variable y in the
range from 0 to oo, i.e. transversally to the boundary
layer, we get

0
j (puu, —puu)dy+ j —(pvu, —pou)dy =
0

a 0

OO

)dy - j —(u—)dy.

de

Taking the boundary conditions into consideration
as well as the rules for changing the order of operations
of differentiation and integration, the previous equation
can be written as

d o0
a{ £ pu(u, —u)dy}pwkue

d > Ou
=—= u—p,u,)dy+(U—),—q-
dx _(.; (P pe c) Ly (M ay)y_o

“

The last term of Eq. (4) represents the shear stress T,
at the wall of the body within the fluid, i.e.

Ou
Iy=1, = (Ha)y:o
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In order to give an answer to the asked questions, we
will consider certain terms of Eq. (4), bearing in mind

that u =u(x,y), p=p(x,y) and u, =u,(x). The first
term of Eq. (4) can be written as:

d|7 d| of
I :a|:£pu(ue —u)dy:| :a{uez{pi(l—:—e)dy} (&)

From the boundary layer theory of incompressible fluid

[2] it is known that the momentum thickness 8" (x) as

well as the displacement thickness &°(x) are
determined with the following expressions in the form
of integrals:

0

80 =[1-D)dy, 870 = [ —(1-—)dy . (6)
0

e 0 e e

These thicknesses refer to the incompressible fluid
flow, for which the density p = const.

Note that the integral in the expression for I/,

which regards the compressible fluid, i.e. the
dissociated gas, is similar in the form to the integral (6)
which defines the momentum thickness of an
incompressible fluid. Since the density of compressible
fluid is the function of two variables, i.e. p=p(x,y);

the density p can be eliminated from sub-integral
function of the integral /; with a suitable trans-

formation of variables, so that two integrals can be
made formally identical. That is why it is necessary to
transform the physical coordinate y into a new

transversal variable for all values of the longitudinal
variable x in the boundary layer. If we compare I;

and & we can conclude that the necessary
transformation of the variables must satisfy the relation

p(x,y)dy =pgdz . (7

In the relation (7), z denotes the new transversal
variable, while p, = const. denotes an arbitrary known

value of the compressible fluid density. Since
po =const., it follows from (7) that the newly
introduced transversal variable z must be a function of
both x and y, i.e. z=1z(x,y). The solution of the

differential equation (7), i.e. transformation of the
variables in the form of this relation should ensure that
in any cross-section of the boundary layer, i.e. for all
the values of the longitudinal variable x:

dz/dy = p/p, , or to be more precise
Z_p
v Po

Since limit values in the expressions for the integrals /;

®

and 8™ are the same, it is necessary that the physical
transversal variable y and the newly introduced

transversal variable z(x,y) should have the same
values at the edges of the boundary layer.
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With these necessary conditions, /; can be brought

to this form
d| » C u
I =— —(A-—)ppdz |=
1 dx[ue [[ue( ue)pO ]
d 2 _ d 2 4 Kk
dxlpo“ .[ " 1——)@}—5(90%A )

where A™ stands for the integral

= ul 1—ui)dz = A (x). )
0 ‘e

e

It is clear that the expressions for the value A™ and for

the momentum thickness 8" are of the same form.

That is why, by analogy with 8", the value A™ is, in
the literature [6], called the conditional displacement
thickness.

According to the given relations and conditions of
"norm setting”, the term /3 of the equation (4) can be

transformed as

du, ¢ u
Iy = ue)dy =-u,—< | pPe-ydy =
dc ¢ P
» du,
= =-pout, A —
dx Pote
where
A= [Ee-Dyaz=a"() (10)
0 p ue

Because of the formal similarity of the expression (10)

for the value A" with the expression (6), which defines
the displacement thickness of the incompressible fluid

8", this value is, in the literature, called the conditional
displacement thickness.

Based on the analysis undertaken here, and from the
condition of the formal identity of the considered
integrals, it follows, according to (8), that the
transformation of the transversal variable in the form of
the expression

y
zxy)= [ Ly (11)
o Po

satisfies all in advance given conditions of the norm-
setting.

By means of the newly introduced transversal
variable (11), Eq. (4) of compressible fluid transforms
into

sk * d
i(uezA )+u, AT —% +p—wv u,
dx dx Po  Po

and after differentiation we come to the nondimensional
equation which is
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where
A

sk

A

This way the obtained momentum equation of the
dissociated gas (12) has almost identical form with the
momentum equation of the incompressible fluid for the
case of the flow along the porous wall of the body
within the fluid [2, 9]. Besides, for the case
p=pg=pP, =P, =const., the newly introduced

H:

transversal variable comes down to z(x,y)=y, the
conditional thicknesses of the boundary layer reduce to
A" =8"", A" =8", while the momentum equation (12)
transforms to the momentum equation of the

incompressible fluid for the corresponding flow
problem.

With the newly introduced transversal variable
z(x,y), the shear stress on the wall of the body within

the fluid can be written in the form of the expression

v, =Dube Ze o (13)
Po A

where the nondimensional friction function C is
defined as

8(u/u6)}
=l — =C(x). (14)
{a(z/A o,

Substituting the expression (13) into the momentum
equation (12) we obtain Eq.

dA**+d A" _ Pukly ¢ L Pw Oy
dx U, p% ueA** Po U

After some transformations the previous equation
can be brought to the equation of the form

ook F
Z _e, (15)
dx u

e

and as such it is usually stated in the literature for
different cases of the fluid flow. In Eq. (15) the

characteristic function de of the dissociated gas
boundary layer is determined with the expression
_ _ A**
Fy :2{MC—(2+H)f}+2M . (16)
PoMo PoVo
(vo=Ko/pPo)

where the function Z** and the so-called parameter of
the form f are determined as:

A" d du, A™?
7)), Qe _du A 2 7w .
VO d.Xf dx VO

Z** —
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The corresponding momentum equation of
incompressible fluid [2] is of the same form as Eq. (15).
However, the characteristic function of the boundary
layer F p 1s, in that case, determined with the

expression

F,=2[¢,-@+H)f]-20 , (17)

where for incompressible fluid, we use the subscript ¢

¢ {M} PN
y=0

o(y/8™) dv v
* Kk D ok
Ht:6** > Zt:8 ak:_vWS .
) v %

In the given expressions A is the porosity parameter.
For the case of a non-porous wall of the body within the
fluid, the porosity parameter equals zero, because
v,(x)=0 .

Because of the methodology of the formal identity
of the corresponding values with compressible and
incompressible fluid, a request of formal identity of the
characteristic functions de and [, can be made.
The "coefficient” next to the nondimensional function £
in the relation (16) indicates that a new longitudinal
variable of the boundary layer should be introduced
instead of the physical coordinate x. The new longit-

udinal variable is, for now, defined with the general
relation

s =s(x).
By means of the newly introduced longitudinal variable
(up(x) > uy(s), Z™(x) > Z™(s),...) and the trans-
formation of the differentiation, the parameter of the
form ]_" comes down to

du, A" (x)  du, A"?ds  ds

f(x)za v -

ds vy dx dx
where now we have

du, AYZ AT
e (O (L)

ds v, Vo

f

The momentum equation (15) is, in this case,
transformed into the equation
dZ** de

ds u, (19)

e
in which the characteristic function Fy, is determined
with the expression

1

Fy, =ds/_ddep =
_ z{q Publy 15, gy f} pPuluh T
Poko ds/dx PoVo ds/dx
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Having this form of the expression Fy, , it is obvious

that with the relation

l X
[ pumdr |, (20)
Pokto 0

(é - p_wH_W]
dx  pg Ko

the function £, becomes

s(x) =

A**
Fp=2[0-@+H)f]+22=Fo
Vo My

In the expression (20) for the newly introduced
longitudinal variable s(x), the values p,, and p,,
stand for the known distributions of the density and

dynamic viscosity at the wall of the body within the
fluid.

If, with the compressible fluid flow, we introduce
the porosity parameter as

Als) =————, 2

then for the characteristic function £, of the boundary

layer of the dissociated gas we get the expression which
takes its final form as

Fy=2[C-Q2+H)f]-2A. (22)

The obtained expression (22) for the characteristic
function F, of the dissociated gas boundary layer is,

with the considered conditions, of the same form as the
corresponding expression (17) for the characteristic
function F), of incompressible fluid. For the case of the

boundary layer flow along the non-porous wall
(v,,=0) the expressions for the both characteristic

functions F,, and F, formally reduce to the familiar

expression [2] characteristic for the incompressible
fluid flow

F=2[ C-Q+H)[].

3. CONCLUDING DISCUSSION

Therefore, by a detailed analysis undertaken here,
we present a natural procedure to obtain the form of the
transformation of the transversal and longitudinal
variables of the boundary layer. At the same time, the
answer to the question concerned with the purpose of
the newly introduced variables s(x) and z(x,y) was
given. By introducing these variables, we achieve that
the boundary layer expressions of the compressible
fluid (dissociated gas) for the conditional thicknesses,
for the momentum equation and for the characteristic
function Fy, have the same form as the corresponding

expressions for the case of the incompressible flow. In
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addition, for the conditions of isothermal liquid flow
across the porous wall (p=const., p=-const.), these

values of the dissociated gas come down to the
corresponding values of incompressible fluid. In this
case the porosity parameter of the dissociated gas A(s)

transforms to the porosity parameter of incompressible
fluid A(x). Consequently the corresponding sets of

parameters, upon which the General Similarity Method
is based [5], are determined with the formally identical
formulas [2]. This way the application and control of
obtaining so-called generalized equations with the
General Similarity Method is much easier for different
cases of the compressible fluid flow in the boundary
layer.

Moreover, the transformations of the variables (11)
and (20), i.e. transformations (1), were known in the
literature as Dorodnicin’s transformations modified by
Lees L. They were particularly used for investigation of
the dissociated and ionized gas flow in the boundary
layer [6, 7]. Since this paper shows a logical procedure
to obtain them and pinpoints the benefit of their usage,
it is important, first of all, from a methodological point
of view.

At the end of this analysis, it should be once more
stated that the introduction of the new variables s(x)

and z(x,y) in the form of the transformations (20) and

(11) was determined based on the condition of the
formal identity of the momentum equations and the
characteristic functions with compressible and incom-
pressible fluid.

Thus defined transformations of the variables should
be applied to the dynamic equation of the system (2).
Here, as with other fluid flow problems, the stream
function w(s,z) is introduced. This function is intro-

duced in accordance with

u=—, 0=
oz Py Uy OX  Po

p_()“_o(uﬁJrUﬂ):_a_\V’ (23)
0
which is based on the momentum equation of the

considered problem of the compressible fluid flow.

After the transformation of the wvariables and
substituting (23) the starting dynamic equation of the
system (2) becomes

oy 0%y oy 8> du o o
_w_\v__\v_\zv:p_eue ¢ vy 2 (0 ‘24’),
Oz 0s0z Os oz ds 0z = oz
0. Mo, Mo Mo, (g
0z Os JTI
oy
zZ —> ©; — > u,(s).
Oz

The nondimensional function @ in the obtained
equation is determined with the expression

o-P M
Pw My
Obviously, =1 for z=0, and
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pW l"lW
for z — oo. If the obtained Eq. (24) is compared to the
corresponding known equation for the case of the
incompressible fluid flow [2, 9] expressed by means of
the stream function y(x, y),
oy 82\|1 oy 62\y _du, N 83\|1

—=u vV—r-, 25
Oy Ox0y Ox 8y2 ¢ dx 6y3 @)

it can be seen that these two equations are almost of the
same form. To be more precise, the left-hand sides of
Egs. (24) and (25) have the same form. The right-hand
sides do not. However, in the case of the isothermal
flow of incompressible fluid (p =const., p=const.),

the function Q becomes equal to 1, while Eq. (24)
basically transforms to the corresponding Eq. (25) of
the incompressible fluid. Under these conditions these
two equations are identical.

Therefore, by application of the new variables s(x)
and z(x,y) in the form of the transformations (1), the

dynamic boundary layer equation of compressible fluid
is brought to almost (i.e. partially) identical form as the
corresponding boundary layer equation of incompress-
ible fluid.

Note that, under the same conditions [2], by means
of Stewartson’s variables, the dynamic equation of the
system (2) can be brought to the completely same form
as the corresponding equation of incompressible fluid.
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O TPAHC®OOPMAIINJAMA
MNPOMEH/BUBUX KO/ PEIABAIBA
JEAJHAYNHA TPAHUYHOT CJI0JA
CTHIL/BUBOT ®JIYUTA

Bpanko P. O6posuh, Cno6onan P. CaBuh

OBaj pag ce OfHOCH Ha CTpPYyjame CTUIIBHBOT
(hrynma, OXHOCHO AMCONMPAHOT raca y TPaHAIHOM
clojy. Y pajy Ccy Ha jefjlaH JOTHYHU Ha4uH JehpUHU-
caHe TpaHcgopMalyje NOAY>KHE U MONpeyHe Mpo-
MEHJbUBE TPAHWYHOT CJI0ja, Koje cy Beh o panumje
mo3HaTe y nuTepaTypu. IlomeHyTe TpaHcdopma-
IUje ce KOpHCTe Kao IPETXOfHE KOJ HpHUMeHe
Merope yommTeHe CIMYHOCTH 3a pellaBarmbe
jemHaynMHa TPaHUYHOT C10ja CTUIIBUBOT (hiyupa.

Y pany je mokaszaHo fma ce oBe TpaHcopmalyje
MOTY Ie()MHUCATH U3 YCIOBa HCTOBETHOCTH OOJIMKA
ofroBapajyhux BelMYWHA W je[lHAUMHA TPAaHUYHOT
CJI0ja CTHIIBMBOT W HECTUIIIJLUBOT (payunpa.
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